簡易檢索 / 詳目顯示

研究生: 羅竟晏
Ching-Yen Lo
論文名稱: 等通道轉角擠製對Mg-5Y合金與內部氫化機械性質之研究
Study on Mechanical Properties of Mg-5Y Alloy and Internal Hydrogenation by Equal Channel Angular Extrusion
指導教授: 丘群
Chun Chiu
口試委員: 黃崧任
Song-Ren Huang
陳士勛
Shi-Xun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 117
中文關鍵詞: Mg-5Y鎂合金熱氫製程內部氫化等通道轉角擠製機械性質
外文關鍵詞: Mg-5Y magnesium alloy, thermal hydrogen treatment, internal hydrogenation, equal channel angular pressing, mechanical properties
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用 Mg-5Y (wt%) 合金作為基材以 325 ℃、350 ℃為處理溫度以120°及路徑 Bc 之等徑轉角擠製加工(Equal Channel Angular Pressing, ECAP)進行擠製2與4道次(pass),以將富Y之顆粒細化及均勻化後再進行熱氫製程,處理溫度以350 ℃、時間為36小時,且於 0.34 MPa 氫氣壓力下進行內部氫化後再真空下放氫1小時,並分析試片之成分、微觀結構及機械性質以探討晶粒細化是否對於內部氫化作用之機械性質有影響。
    在經過熱氫製程後,以ECAP 350 ℃ 擠製4道次的試片有最高之硬度及強度,其原因在於試片在ECAP後有最小的晶粒尺寸。研究結果顯示ECAP會降低鎂晶粒尺寸、富Y顆粒尺寸以及內部氫化處理後產生之氫化物YH2之粒徑尺寸。在同樣的熱氫製程參數下,鎂晶粒尺寸下降會使YH2的生成量變多及YH2粒徑尺寸下降,提升散佈強化效果;然而,因為退火作用及鎂基底中釔濃度大幅減少,造成固溶強化效果降低,導致試片在經過熱氫處理後機械性質降低。


    In this study, Mg-5Y (wt%) alloy was used as the base material, 325 ℃, 350 ℃ as the processing temperature, 120° and path Bc Equal Channel Angular Pressing (ECAP) for extrusion 2 and 4 Pass (pass), to refine and homogenize the Y-rich particles before the hot hydrogen process, the treatment temperature is 350 ℃, the time is 36 hours, and the internal hydrogenation is carried out under the hydrogen pressure of 0.34 MPa, and then the hydrogen is released under vacuum 1 hour, and analyze the composition, microstructure and mechanical properties of the test piece to explore whether the grain refinement has an impact on the mechanical properties of the internal hydrogenation.
    After the hot hydrogen process, the test piece extruded with ECAP 350 ℃ for 4 passes has the highest hardness and strength. The reason is that the test piece has the smallest grain size after ECAP. The research results show that ECAP can reduce the size of Mg grains, Y-rich grains and the grain size of hydride YH2 produced after internal hydrogenation treatment. Under the same hot hydrogen process parameters, the reduction of magnesium grain size will increase the amount of YH2 produced and the particle size of YH2 will decrease, which will improve the effect of dispersion strengthening; The strengthening effect is reduced, resulting in a decrease in the mechanical properties of the test pieces after hot hydrogen treatment.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 前言 1 第二章 文獻回顧 3 2.1 鎂與鎂合金之簡介 3 2.1.1 純鎂的介紹 3 2.1.2 鎂合金的介紹 4 2.1.3 鎂合金之命名 5 2.1.4 合金元素添加的影響 7 2.2 鎂釔合金 11 2.3 鎂合金之強化方式 13 2.3.1. 固溶強化 13 2.3.2 應變硬化 13 2.3.3 散佈強化 14 2.3.4 析出硬化 15 2.3.5 晶粒細化 15 2.4 熱氫製程 (Thermal Hydrogen Treatment, THT) 16 2.4.1 熱氫製程於粉末上的應用 17 2.4.2 熱氫製程於塊材上的應用 19 2.5 熱氫製程研究回顧 27 2.6 等通道轉角擠製(Equal Channel Angular Pressing, ECAP) 30 2.6.1等通道轉角擠製原理 30 2.6.2等通道轉角擠製路徑 32 第三章 實驗方法 34 3.1實驗流程 34 3.2實驗材料 35 3.3 熔煉設備 35 3.4 吸放氫加熱控制系統 35 3.5 ECAP 製程 37 3.6 分析儀器 38 3.6.1 光學顯微鏡 38 3.6.2 場發式掃描電子顯微鏡 39 3.5.3 X 光繞射分析儀 40 3.7 機械性質測試 42 3.7.1 微型維克氏硬度機(Micro-Vickers hardness tester) 42 3.7.2 拉伸試驗機 42 第四章 結果與討論 46 4.1 顯微結構及成分分析 46 4.1.1 Mg-5Y 原材分析 46 4.1.2 Mg-5Y 經ECAP後之分析 49 4.1.4 Mg-5Y 合金經ECAP後之富Y相粒徑尺寸 53 4.1.5 Mg-5Y 合金及ECAP試片經熱氫製程後之分析 56 4.2 機械性質 67 4.2.1 硬度試驗 67 4.2.2 拉伸試驗 68 4.2.3 破斷面觀察 69 4.3 實驗結果討論 76 第五章 結論 79 參考文獻 80 附錄 89 附錄一 Mg-5Y THT 之500倍SEM圖 89 附錄二 Mg-5Y THT 之5000倍SEM圖 91 附錄三 ECAP 325°C N=2 THT之500倍SEM圖 93 附錄四 ECAP 325°C N=2 THT之5000倍SEM圖 95 附錄五 ECAP 350°C N=2 THT之500倍SEM圖 97 附錄六 ECAP 350°C N=2 THT之5000倍SEM圖 99 附錄七 ECAP 350°C N=4 THT之500倍SEM圖 101 附錄八 ECAP 350°C N=4 THT之5000倍SEM圖 103

    [1] J. W. Kong, Q. N. Shi, J. H. Wang, J. H. Yi, H. C. Xie, L. W. Chen, “Microstructure and properties of Ag-1.33%Mg-0.54%Ni alloy after severe plastic deformation and internal oxidation”, Rare metal materials and engineering 42, 2013, pp. 32-36.
    [2] S. Morozumi, H. Saikawa, T. Minegishi, M. Matsuyama, K. Watanabe, M. Iijima, M. Ohtsuki, “Structure and mechanical properties of internally hydrided Mg-Ⅲa transition metal alloys”, Journal of materials science 31, 1996, pp. 4647-4654.
    [3] X. Shi, J. Zou, C. Liu, L. Cheng, D. Li, X. Zeng, W. Ding, “Study on hydrogenation behaviors of a Mg-13Y alloy”, Internal journal of hydrogen energy 39, 2014, pp. 8303-8310.
    [4] L. Gao, R.S. Chen, E.H. Han, “Solid solution strengthening behaviors in binary Mg-Y single phase alloys”, Journal of alloys and compounds 472, 2009, pp. 234-240.
    [5] I. Polmear, D. StJohn, J. F. Nie, M. Qian, “6-Magnesium alloys”, Light alloys (fifth edition) metallurgy of the light metals, 2017, pp. 287-367.
    [6] 張文政、劉正、毛萍莉,「鎂金屬提煉和精煉工藝的研究進展」, 機械傳動雜誌 11 期,民國 103 年。
    [7] I. Polmear, D. StJohn, J. F. Nie, M. Qian, “3-Casting of light alloys”, Light alloys (fifth edition) metallurgy of the light metals, 2017, pp. 109-156.
    [8] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry”, The international journal of advanced manufacturing technology volume 39, 2008, pp. 861-865.
    [9] H. Watarai, “Trend of research and development for magnesium alloys”, Quarterly review 18, 2006, pp. 84-97.
    [10] I. Polmear, D. StJohn, J. F. Nie, M. Qian, “1-The light metals”, Light alloys (fifth edition) metallurgy of the light metals, 2017, pp. 1-29.
    [11] C. Moosbrugger, “Chapter 1 introduction to magnesium alloys”, Engineering properties of magnesium alloys, 2017, pp. 1-10.
    [12] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, “Research on an Mg-Zn alloy as a degradable biomaterial”, Acta biomaterialia 6, 2010, pp. 626-640.
    [13] B. L. Mordike, T. Ebert, “Magnesium properties-applicationspotential”, Materials science and engineering A 302, 2001, pp. 37-45.
    [14] A. A. Luo, “Recent magnesium alloy development for elevated temperature applications”, International materials reviews 49, 2004, pp. 13-30.
    [15] A. Kielbus, T. Rzychon, “Mechanical and creep properties of Mg-4Y3RE and Mg-3Nd-1Gd magnesium alloy”, Procedia engineering 10, 2011, pp. 1835-1840.
    [16] K. Luo, L. Zhang, G. Wu, W. Liu, W. Ding, “Effect of Y and Gd content on the microstructure and mechanical properties of Mg-Y-RE alloys”, Journal of magnesium and alloys 7, 2019, pp. 345-354
    [17] L. Gao, R. S. Chen, E. H. Han, “Solid solution strengthening behaviors in binary Mg-Y single phase alloys”, Journal of alloys and compounds 472, 2009, pp. 234-240.
    [18] C. H. Caceres, D. M. Rovera, “Solid solution strengthening in concentrated Mg-Al alloys”, Journal of light metals 1, 2001, pp. 151- 156.
    [19] C. H. Caceres, A. Blake, “The strength of concentrated Mg-Zn solid solutions”, Physica status solidi 194, 2002, pp. 147-158.
    [20] R. Lapovok, E. Zolotoyabko, A. Berner, V. Skripnyuk, E. Lakin, N. Larianovskyb, C. Xuc, E. Rabkinb, “Hydrogenation effect on microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloys”, Materials science and engineering A 719, 2018, pp. 171-177.
    [21] H. Okamoto, “Mg-Y (Magnesium-Yttrium)”, Journal of phase equilibria and diffusion 31, 2010, pp. 199.
    [22] B. L. Wu, Y. H. Zhao, X. H. Du, Y. D. Zhang, F. Wagner, C. Esling, “Ductility enhancement of extruded magnesium via yttrium addition”, Materials science and engineering A 527, 2010, pp.4334-4340.
    [23] L. Gao, R. S. Chen, E. H. Han, “Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys”, Journal of alloys and compounds 481, 2009, pp. 379-384.
    [24] J. Tan, Y. H. Sun, H. B. Xie, B. Z. Sun, Y. Qi, “Atomic-resolution investigation of Y-rich solid solution with an invariable orientation in Mg-Y binary alloy”, Journal of alloys and compounds 766, 2018, pp. 716-720.
    [25] C. C. Kammerer, N. S. Kulkarni, R. J. Warmack, Y. H. Sohn, “Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn”, Journal of alloys and compounds 617, 2014, pp. 968-974.
    [26] D. Nagarajan, X. Ren, C. H. Cáceres, “Anelastic behavior of Mg-Al and Mg-Zn solid solutions”, Materials science and engineering: A 696, 2017, pp. 387-392.
    [27] R. Abbaschian, L. Abbaschian, R. E. Reed-Hill, Physical metallurgy principles 4th edition, 2008
    [28] A. Styczynski, C. Hartig, J. Bohlen, D. Letzig, “Cold rolling textures in AZ31 wrought magnesium alloy”, Scripta materialia 50, 2004, pp. 943-947.
    [29] H. Meckings, U. F. Kocks, “Kinetics of flow and strain-hardening”, Acta metallurgica 29, 1981, pp. 1865-1875.
    [30] M. X. Guo, M. P. Wang, L. F. Cao, R. S. Lei, “Work softening characterization of alumina dispersion strengthened copper alloys”, Materials characterization 58, 2007, pp. 928-935.
    [31] Y. C. Zhao, M. C. Zhao, R. Xu, L. Liu, J. X. Tao, C. Gao, C. Shuai, A. Atrens, “Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy”, Journal of alloys and compounds 770, 2019, pp. 549-558.
    [32] L. B. Ren, G. F. Quan, M. Y. Zhou, Y. Y. Guo, Z. Z. Jiang, Q. Tang, “Effect of Y addition on the aging hardening behavior and precipitation evolution of extruded Mg-Al-Zn alloys”, Materials science and engineering: A 690, 2017, pp. 195-207.
    [33] J. Miao, W. Sun, A. D. Klarner, A. A. Luo, “Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 phase in a Mg-Al-Sn-Ag alloy”, Scripta materialia 154, 2018, pp. 192-196.
    [34] B. Q. Shi, Y. Q. Cheng, H. Yan, R. S. Chen, W. Ke, “Hall-Petch relationship, twinning responses and their dependences on grain size in the rolled Mg-Zn and Mg-Y alloys”, Materials science and engineering A 743, 2019, pp. 558-566.
    [35] T. Sadhasivama, H. T. Kimb, S. Jungc, S. H. Rohd, J. H. Parka, H. Y. Junga, “Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review”, Renewable and sustainable energy reviews 72, 2017, pp. 523-534.
    [36] M. Szymanski, B. Michalski, M. Leonowicz, Z. Miazga, “Application of the HDDR method for recycling of Nd-Fe-B magnets”, IEEE international magnetics conference, 2015.
    [37] Y. Zhang, J. Han, S. Liu, F. Wan, H. Tian, X. Zhang, C. Wang, J. Yang, Y. Yang, “Coercivity enhancement by grain refinement for anisotropic Nd2Fe14B-type magnetic powders”, Scripta materialia 110, 2016, pp. 57-60.
    [38] M. Szymański, B. Michalski, M. Leonowicz, Z. Miazga, “Structure and properties of Nd-Fe-B alloy subjected to HDDR process”, Archives of metallurgy and materials 61, 2016, pp. 217-220.
    [39] L. Hu, Y. Wu, Y. Yuan, H. Wang, “Microstructure nanocrystallization of a Mg-3 wt.% Al-1 wt.% Zn alloy by mechanically assisted hydriding-dehydriding”, Materials letters 62, 2008, pp. 2984-2987.
    [40] Z. Z. Xie, J. F. Fan, H. B. Dong, F. Zhou, B. S. Xu, “Microstructure evolution and nano-crystalline production of Mg-9Al-Zn alloy during HDDR processing”, Journal of alloys and compounds 699, 2017, pp. 841-848.
    [41] H. Takamura, T. Miyashita, A. Kamegawa, M. Okada, “Grain size refinement in Mg-Al-based alloy by hydrogen treatment”, Journal of alloys and compounds 356-357, 2003, pp. 804-808.
    [42] A. Kamegawa, T. Funayama, J. Takahashi, H. Takamura, M. Okada, “Grain refinements of Al-Mg alloy by hydrogen heat-treatments”, Materials transactions 46, 2005, pp. 2449-2453.
    [43] T. Miyazawa, Y. Kobayashi, A. Kamegawa, H. Takamura, M. Okada, “Grain size refinements of Mg Alloy (AZ61, AZ91, ZK60) by HDDR treatments”, Materials transactions 45, 2004, pp. 384-387.
    [44] O. N. Senkov, F. H. Froes, “Thermohydrogen processing of titanium alloys”, International journal of hydrogen energy 24, 1999, pp. 565- 576.
    [45] Z. Sun, W. Zhou, H. Hou, “Strengthening of Ti-6Al-4V alloys by thermohydrogen processing”, International journal of hydrogen energy 34, 2009, pp. 1971-1976.
    [46] Y. Zhang, S. Q. Zhang, “Hydrogenation characteristics of TI-6AL-4V cast alloy and its microstructural modification by hydrogen treatment”, International journal of hydrogen energy 22, 1997, pp. 161-168.
    [47] J. Nakahigashi, H. Yoshimura, “Ultra-fine grain refinement and tensile properties of titanium alloys obtained through protium treatment”, Journal of alloys and compounds 330-332, 2002, pp. 384-388.
    [48] H. Liu, J. Cao, P. He, J. C. Feng, “Effect of hydrogen on diffusion bonding of commercially pure titanium and hydrogenated Ti6Al4V alloys”, International journal of hydrogen energy 34, 2009, pp. 1108- 1113.
    [49] X. Li, X. Chen, B. Li, N. Chen, J. Chen, “Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment”, Materials characterization 157, 2019.
    [50] H. Yoshimura, “Mezzoscopic grain refinement and improved mechanical properties of titanium materials by hydrogen treatments”, International journal of hydrogen energy 22, 1997, pp. 145-150.
    [51] H. Yoshimura, J. Nakahigashi, “Ultrafine grain refinement and superplasticity of titanium alloys obtained through protium treatment”, International journal of hydrogen energy 27, 2002, pp. 769-774.
    [52] X. W. Liu, Y. Q. Su, L. S. Luo, K. Li, F. Y. Dong, J .J. Guo, H. Z. Fu, “Effect of hydrogen treatment on solidification structures and mechanical properties of Ti-Al alloys”, International journal of hydrogen energy 36, 2011, pp. 3260-3267.
    [53] X. Li, G. Jia, F. Qu, H. Wu, J. Chen, “Ultrafine grain refinement and superplasticity of Ti-55 alloy obtained by hydrogen absorption and desorption”, Journal of materials engineering and performance 27, 2018, pp. 3472-3477.
    [54] B. Lagowski, “Metallography of hydrided ZE63 magnesium casting alloy”, A F S trans 84, 1976, pp. 151.
    [55] Z. Y. Zhao, “High performance ZM8 casting magnesium alloy processed by hydrogenation heat treatment (in Chinese)”, Aeronaut mater 1, 2011, pp. 1-7.
    [56] A. Züttel, “Materials for hydrogen storage”, Material today 6, 2003, pp. 24-33.
    [57] D. Chandra, J. J. Reilly, R. Chellappa, “Metal hydrides for vehicular applications: The state of the art”, JOM, 2006, pp. 26-32.
    [58] K. Fu, X. Jiang, Y. Guo, S. Li, J. Zheng, W. Tian, X. Li, “Experimental investigation and thermodynamic assessment of the yttrium hydrogen binary system”, Progress in natural science: Materials international 28, 2018, pp. 332-336.
    [59] K. Goc, W. Prendota, J. Przewo_znik, Ł. Gondek, C. Kapusta, A. Radziszewska, K. Mineo, A. Takasaki, “Magnetron sputtering as a method for introducing catalytic elements to magnesium hydride”, International journal of hydrogen energy 43, 2018, pp. 20836-20842.
    [60] “ASTM E8E8M-09 standard test methods for tension testing of metallic materials”, ASTM international, 2011.
    [61] Y. Yang, L. Peng, P. Fu, B. Hu, W. Ding, “Identification of NdH2 particles in solution-treated Mg-2.5%Nd (wt.%) alloy”, Journal of alloys and compounds 485, 2009, pp. 245-248.
    [62] 莊東漢,「材料破損分析」,五南出版社,民國 96 年。
    [63] A. Matin, F. F. Saniee, H. R. Abedi, “Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method”, Materials science and engineering A 625, 2015, pp. 81-88.
    [64] M. H. Korayem, R. Mahmudi, W. J. Poole, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials science and engineering A 519, 2009, pp. 198-203.
    [65] S. F. Hassan, M. Gupta, “Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement”, Materials science and engineering A 392, 2005, pp. 163-168.
    [66] S. S. Zhou, K. K. Deng, J. C. Li, S. J. Shang, W. Liang, J. F. Fan, “Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite”, Materials and design 63, 2014, pp. 672-677.
    [67] D. Setoyama, M. Ito, J. Matsunaga, H. Muta, M. Uno, S. Yamanaka, “Mechanical properties of yttrium hydride”, Journal of alloys and compounds 394, 2005, pp. 207-210.
    [68] 李智堯 (2018),不同轉角及道次之等徑轉角擠製對 AZ31/WS2INT鎂基複合材料微觀結構及機械性質影響之研究,國立臺灣科技大學機械工程學系碩士論文
    [69] 王偉成 (2017),電解液中添加 WS2 無機奈米顆粒對 AZ31鎂合金的微弧氧化陶瓷膜影響之研究,國立台灣科技大學機械工程學系碩士論文
    [70] 蘇士銘 (2020),不同溫度及道次等通道轉角擠製(ECAP)對 AZ61/Al2O3鎂基複合材料機械性質及腐蝕之影響,國立台灣科技大學機械工程學系碩士論文
    [71] Valiev, R. Z., Islamgaliev, R. K., & Alexandrov, I. V. (2000), Bulk
    nanostructured materials from severe plastic deformation. Progress in materials science, 45(2), Pages 103-189
    [72] Huang, S.-J., Ho, C.-H., Feldman, Y., Tenne, R. (2016), Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes. Journal of Alloys and CompoundsVolume 654, Pages 15-22
    [73] Huang, S.-J., Ali, A.N. (2019), Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites. Journal of Materials Processing Technology 272, Pages 28-39
    [74] Shahar, I., Hosaka, T., Yoshihara, S., & MacDonald, B. (2017), Mechanical and corrosion properties of AZ31 Mg alloy processed by Equal-Channel Angular Pressing and Aging. Procedia engineering. 184, 423-431
    [75] 洪品森(2009),鎂基複合材料的製備及其熱處理後機械性質之研究,國立中正大學機械工程學系碩士論文
    [76] 周暾煜 (2016),等徑轉角擠壓 (ECAP) 製程及添加物對 AZ 鎂合金儲氫性能之影響,國立台灣科技大學機械工程學系碩士論文
    [77] 尤薇瑄(2020),內部氫化製程對 Mg-5Y 合金機械性質影響之研究,國立台灣科技大學機械工程學系碩士論文
    [78] 王芓淵(2021),內部氫化製程對 Mg-10Y 合金機械性質與氫化行為影響之研究,國立台灣科技大學機械工程學系碩士論文
    [79] X. Liua, S. Yin, Q. Lan, J. Xue, Q. Le, and Z. Zhang, “Investigation of the hydrogen states in magnesium alloys and their effects on mechanical properties”, Materials & Design 134, 2017, pp. 446-454.
    [80] M. H. Korayem, R. Mahmudi, and W. J. Poole, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials science and engineering A 519, 2009, pp. 198-203.
    [81] S. F. Hassan and M. Gupta, “Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement”, Materials science and engineering A 392, 2005, pp. 163-168.
    [82] S. S. Zhou, K. K. Deng, J. C. Li, S. J. Shang, W. Liang, and J. F. Fan, “Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite”, Materials and design 63, 2014, pp. 672-677.
    [83] D. Setoyama, M. Ito, J. Matsunaga, H. Muta, M. Uno, and S. Yamanaka, “Mechanical properties of yttrium hydride”, Journal of alloys and compounds 394, 2005, pp. 207-210.
    [84] Amit Bhaduri, “Mechanical Properties and Working of Metals and Alloys”, 2018, pp. 3-94.
    [85] S. O. Ojediran, and O. Ajaja, "The Bailey-Orowan equation", Journal of materials science, vol. 23, pp. 4037-4040, 1998.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 2025/08/28 (校外網路)
    全文公開日期 2025/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE