簡易檢索 / 詳目顯示

研究生: 楊裕圍
Yu-wei Yang
論文名稱: 不鏽鋼與鈦合金製作之鎖定式 骨髓內釘與鎖定螺絲之機械性質之比較
Study of Mechanical Property of the Interlocking Nails and Screws Made by Stainless Steel and Titanium Alloy
指導教授: 趙振綱
Ching-kong Chao
口試委員: 林晉
Jinn Lin
劉見賢
Chien-Hsien Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 150
中文關鍵詞: 有限元素分析生物力學測試骨髓內釘鎖定螺絲應變能密度
外文關鍵詞: biomechanical testing, interlocking nails
相關次數: 點閱:210下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前臨床上所使用於治療下肢長骨骨折主要是以鎖定式骨髓內釘為主,由於傳統式骨板之缺點太多,所以已逐漸被鎖定式骨髓內釘所取代,且其擁有能將骨折處軟組織傷害降到最小以及穩定骨折處之優點,故鎖定式骨髓內釘於目前市面上已廣泛的被應用。而從臨床觀察中發現,在骨折治療過程中,鎖定式骨髓內釘最容易發生破壞的地方為內釘上的螺絲孔,因而造成骨折固定的失效、不癒合或延遲癒合等情形,而鎖定螺絲最容易發生的破壞模式則為破斷與鬆脫。目前市面上之骨髓內釘與鎖定螺絲由於其幾何差異及材質的不同,很難客觀的做比較,故本研究自行設計與製作螺絲及內釘,來評估幾何尺寸之設計與材質對於機械性能優劣性之影響。

    在本文中,分為生物力學測試以及有限元素分析兩部分,在生物力學測試方面,總共對十六種鎖定螺絲以及十二種骨髓內釘作降伏與疲勞測試,而在實驗後得到位移、負載之關係而計算出其彎曲勁度;而在有限元素方面,利用ANSYS建立三維實體模型來進行模擬,其負荷情形與邊界條件和機械測試相同,並得到有限元素分析數值之最大張應力值、位移、總應變能及應變能密度,並將生物力學測試與有限元素分析作一相關性的比較。

    由骨髓內釘之生物力學測試結果得知,當內釘上之螺絲孔徑越大時,則疲勞壽命越低;當內徑越大,則疲勞壽命較高。而整體來說,不鏽鋼之疲勞壽命大於鈦合金。由鎖定螺絲之生物力學測試得知,當其內徑越大、根部導圓角半徑越大,則擁有較高之疲勞壽命,且鈦合金之疲勞壽命大於不鏽鋼。而有限元素模擬與生物力學測試有很好的相關性,因此可得知有限元素模擬可準確的預知生物力學測試之結果。


    The interlocking nails are widely used to treat femoral shaft fracture because of the disadvantages of bone plates. The bone plate has been replaced by the interlocking nail which has the advantages of minimizes soft tissue injury and stabilizes the fixation. In clinical applications, the mainly fracture modes are screw breakage and loosening .The most easily part to be fractured is the nail hole which may cause the inactive fixation, non-union and delayed union. On the market, because of the differences of the material and geometry of the interlocking nails and screws, it’s not easy to compare them fairly. So we designed and manufactured the nails and screws to evaluate the mechanical effects of the geometry and materials.
    In biomechanical testing, both the yielding test and fatigue test were performed. In finite element analysis, a 3D finite element model was carried out to simulate the situation of biomechanical testing. Consequently the maximal tensile stress, displacement , total strain energy and strain energy density are calculated and compared with each other for both biomechanical test and finite element analysis.
    From the results of the biomechanical test , the nails with larger nail holes have lower fatigue life, while the nails with larger outer diameter have higher fatigue life. And the fatigue life of the stainless steel nail is much higher than the titanium nail. The screws with larger inner diameter and root radius have higher fatigue life. Moreover the fatigue life of titanium screws is much higher than stainless steel screws. The results based on finite element analysis are found to relate to the results of biomechanical testing with high correlation coefficient. In conclusions, the finite element analysis could predict the results of biomechanical testing accurately.

    中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 誌謝.....................................................Ⅲ 目錄.....................................................Ⅳ 符號索引.................................................Ⅶ 圖表索引.................................................Ⅸ 第一章 緒論.............................................1 1.1 研究動機與目的...................................1 1.2 股骨之解剖學構造.................................2 1.3 股骨骨髓內釘與鎖定螺絲之簡介.....................5 1.3.1 骨髓內釘之簡介..............................5 1.3.2 鎖定螺絲之簡介..............................7 1.4 文獻回顧.........................................7 1.5 本文架構........................................12 第二章 生物力學測試....................................14 2.1 生物力學測試簡介................................14 2.2 骨髓內釘之彎曲強度測試..........................15 2.2.1 骨髓內釘實體模型之幾何尺寸與材質...........16 2.2.2 骨髓內釘試樣之準備.........................18 2.2.3骨髓內釘之降伏測試..........................20 2.2.4骨髓內釘之疲勞測試..........................24 2.3 鎖定螺絲之彎曲強度測試..........................25 2.3.1 鎖定螺絲實體模型之幾何尺寸與材質...........25 2.3.2 鎖定螺絲試樣之準備.........................29 2.3.3鎖定螺絲之降伏測試..........................31 2.3.4鎖定螺絲之疲勞測試..........................34 第三章 有限元素分析....................................36 3.1 有限元素法簡介..................................36 3.1.1 前處理.....................................36 3.1.2 求解.......................................37 3.1.3 後處理.....................................38 3.2 骨髓內釘之有限元素分析..........................38 3.2.1 骨釘模型之建立.............................38 3.2.2 網格化.....................................39 3.2.3 接觸分析...................................40 3.2.4 邊界條件與求解.............................41 3.2.5 後處理.....................................42 3.3 鎖定螺絲之有限元素分析..........................42 3.3.1 螺絲模型之建立.............................43 3.3.2 網格化.....................................44 3.3.3 接觸分析...................................45 3.3.4 邊界條件與求解.............................45 3.3.5 後處理.....................................46 第四章 結果............................................47 4.1 生物力學測試之結果..............................47 4.1.1 骨髓內釘降伏測試之結果.....................47 4.1.2 骨髓內釘疲勞測試之結果.....................52 4.1.3 鎖定螺絲降伏測試之結果.....................78 4.1.4 鎖定螺絲疲勞測試之結果.....................90 4.2 有限元素分析之結果.............................129 4.2.1 骨髓內釘有限元素分析之結果................129 4.2.2 鎖定螺絲有限元素分析之結果................132 4.3 生物力學測試與有限元素分析之相關性分析.........134 4.3.1 骨髓內釘之相關性比較......................134 4.3.2 鎖定螺絲之相關性比較......................136 第五章 綜合討論.......................................140 5.1 生物力學測試之綜合討論.....................140 5.2 有限元素分析之綜合討論.....................141 5.3 應力集中係數與凹口效應之綜合討論...........144 第六章 結論與未來展望.................................146 6.1 結論......................................146 6.2 未來展望..................................147 參考文獻................................................148 作者簡介................................................151

    [1] Wang, C.J., C.J. Brown, A.L. Yettram, and P. Procter, Intramedullary
    Femoral Nails: One or Two Lag Screws? A Preliminary Study,” Medical Engineering & Physics, Vol.22, pp.613-624(2000).
    [2] Brown, C.J., C.J. Wang, A.L. Yettram, and P. Procter, Intramedullary
    Nails with Two Lag Screws,” Clinical Biomechanics, Vol.19, pp.519-525(2004).
    [3] Halder, S.C., “The Gamma Nail for Peritrochanteric Fractures,” J Bone Joint Surg, Vol.74B, pp.340-344(1992).
    [4] Lin,J., Shen P.W. and Hou, S.M., “Complications of Locked Nailing in Humeral Shaft Fractures,” J Trauma, Vol.54, No.3 pp.530-535 (2003)
    [5] Ruiz, A.L., Kealey, W.D.C. and McCoy, G.F., “Implant Failure in Tibial Nailing,” Injury , Vol.31, pp.359-362 (2000)
    [6] 陳育斌,股骨鎖定內釘之有限元素分析與生物力學測試,台灣科技大學機械工程系碩士論文,民國90年(2001).
    [7] F. B. Christensen • F. Sejling •S. Overgaard • C. Bünger ,
    “ Titanium-alloy enhances bone-pedicle screw fixation : mechanical
    and histomorphometrical results of titanium-alloy versus stainless
    steel”, Eur Spine J9 :pp.97–103 (2000)
    [8] Po-Quang Chen, MD,* Son-Jyh Lin, MSc, Shing-Sheng Wu, MD,
    and Hon So, PhD. “Mechanical Performance of the New Posterior
    Spinal Implant:Effect of Materials, Connecting Plate , and Pedicle
    Screw Design”, SPINE Volume 28, Number 9, pp 881–887, (2003).
    [9] Deith L. Moore and Arthur F. Dalley,ANATOMY,Hagerstown,
    Lippincott Williams & Wilkins,(2001)
    [10] 林晉,鎖定式骨髓內釘之基礎科學與臨床應用,台北,合記圖
    書出版社,民國93年.
    [11] Netter, F.H., "Atlas of Human Anatomy, 2nd ed.," ICON Learning
    Systems, (2002).
    [12] 梁蘭麗,股骨Z型外翻截骨術之三維有限元素分析,中原大學醫學工程系碩士論文,民國92年.
    [13] 黃啟仲,陳偉洤等,「大體解剖學」,藝軒圖書出版社,p601~604,1989
    [14] 蔡文基,楊榮森,「臨床骨折學」第305~343頁,合記書局,民國87年.
    [15] Wu CC, Shih CH: Biomechanical analysis of the mechanism of interlocking nail failure. Arch Orthop Trauma Surg 111:268-72, (1992).
    [16] Cunningham B.W., J.C. Sefter, Y. Shono, and P.C. McAfee, "Static and cyclical biomechanical analysis of pedicle screw spinal constructs". Spine. 18(12): p.1677-88. (1993)
    [17] Hearn, T.C., Schatzker, J. and Wolfson, N., "Extraction Strength of Cannulated Cancellous Bone Screws," J Orthop Trauma, Vol.7, No.2, pp.138-141(1993).
    [18] Taylor ME, Tanner KE, Freeman MA, Yettram AL: Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys 18:122-31, (1996).
    [19] Chiba M., R.F. Mclain, S.A. Yerby, T.A. Moseley, T.S. Smith, and D.R. Benson, "Short-segment pedicle instrumentation". Spine,. 21(3): p. 288-94. (1996)
    [20] Stambough J.L., G. A.M., H. R.L., H. Serhan, and E.H. Sabri, "Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determonation of failure modes". Journal of Spinal Disorders & Techniques, 10(6): pp. 473-81. (1997)
    [21] Gladius Lewis:Evalution of tibial interlocking intramedullary nails. Biomechanics Material and Engineering Vol1.7,315-325,(1997)
    [22] Wang, C.J., A.L. Yettram, M.S. Yao, and P. Procter, “Finite Element
    Analysis of A Gamma Nail within A Fractured Femur,” Medical
    Engineering, Vol.20, pp.677-683(1998).
    [23] Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L: Influence of muscle forces on femoral strain distribution. J Biomech 31:841-6 (1998).
    [24] Pienkowski D., G.C. Stephens, T.M. Doers, and D.M. Hamilton,
    "Multicycle Mechanical Performance of Titanium and Stainless Steel Transpedicular Spine Implants". Spine 23(7): p. 782-88. (1998)
    [25] Gaebler C, Stanzl-Tschegg S, Heinze G, Holper B, Milne T, Berger
    G,Vecsei V. Fatigue Strength of Locking Screws and Prototypes Used in Small-Diameter Tibial Nails: A Biomechanical Study. J Trauma;472:379-84. (1999)
    [26] Kotani Y., B.W. Cunningham, L.M. Parker, M. Kanayama, and P.C. McAfee, "Static and Fatigue Biomechanical Properties of Anterior Thoracolumbar Instrumentation Systems:A Synthetic Testing Model". Spine,24(14): p. 1406-13. (1999)
    [27] Youssef J.A., T.O. McKinley, S.A. Yerby, and R.F. McLain, "Char-acteristics of Pedicle Screw Loading: Effect of Sagittal Insertion Angle on Intrapedicular Bending Moments". Spine24(11) p. 1077(1999)
    [28] Simoes JA, Vaz MA, Blatcher S, Taylor M: Influence of head constraint and muscle forces on the strain distribution within the intact femur. Med Eng Phys 22:453-9(2000).
    [29] Lin J, Lin SJ, Chiang H, Hou SM. Bending strength and holding power of tibial locking screws. Clin Orthop;385:pp.199-206(2001)
    [30] Chen P.Q., S.J. Lin, S.S. Wu, and H. So, "Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design". Spine 28(9): pp.881-6(2003)
    [31] Chen S.I., R.M. Lin, and C.H. Chang, "Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions". Med Eng Phys,. 25(4): pp. 275-82(2003)
    [32] 徐慶琪,「骨螺絲之結構設計與生物力學分析」,國立台灣科
    技大學機械工程系博士學位論文,民國九十四年.
    [33] 陳玉甄,「幾何設計與材料對於鎖定螺絲和骨髓內釘之彎曲強
    度影響」,國立台灣科技大學機械工程系碩士學位論文,
    民國九十五年.
    [34] Shigley, J.E., C.R. Mischke, Mechanical Engineering Design,
    5th Ed., McGraw-Hill, Inc., New York, (1989).

    QR CODE