簡易檢索 / 詳目顯示

研究生: 郭穠禕
Nung-Yi Kuo
論文名稱: 針對軟體實體層中對時間敏感之RU架構設計
Design of Time-Sensitive Radio Unit Architecture in Soft-PHY
指導教授: 徐勝均
Sendren Shen-Dong Xu
口試委員: 許騰尹
Terng-Yin Hsu
柯正浩
Kevin Cheng-Hao Ko
徐勝均
Sendren Shen-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 5G新無線電(5G New Radio, 5G NR)軟體定義網路實體層低延遲
外文關鍵詞: PHY (Physical Layer), Low Latency
相關次數: 點閱:383下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

國際電信聯盟(International Telecommunication Union, ITU)於2015年6月提出IMT-2020計畫,計畫中明確定義了5G的三大方向為:增強型行動寬頻通訊(Enhanced Mobile Broadband, eMBB)、大規模機器型通訊(Massive Machine Type Communications, mMTC)和超可靠度和低延遲通訊(Ultra-reliable and Low Latency Communications, URLLC)。本論文主要是針對URLLC方向中,對軟體實體層(Physical Layer, PHY)中對時間敏感之RU(Radio Unit)架構設計。
首先,針對HARQ的回傳訊號時間提出新的架構設計。因為在4G之下,當急需回傳訊號時只能等到4個subframe後才能進行回傳HARQ,此時已延遲多時。因此,藉由將每個使用者的回傳時間優先順序進行排程,依照每位使用者不同的要求為其量身訂做回傳時間,讓每位使用者都能夠擁有最好的使用者體驗。 然而,在4G LTE時,RU與L1組合僅能最多同時服務16個使用者裝置,如此數量不足以支撐5G龐大的使用者數量。因此,我們針對這個問題提出了新的RU與L1架構設計。本研究實現了5G NR軟體實體層中對時間敏感之RU架構設計,並且其滿足了URLLC的低延遲需求。


International Telecommunication Union (ITU) proposed the IMT-2020 project in June 2015. The plan clearly defines three directions of 5G: Enhanced Mobile Broadband (eMBB), large-scale Massive Machine Type Communications (mMTC), and Ultra-reliable and Low Latency Communications (URLLC). This thesis is mainly to design the Soft-PHY (software-defined Physical Layer) time-sensitive Radio Unit (RU) Architecture for the URLLC.
First, a new architecture design is proposed for HARQ's backhaul signal time. Under 4G, when it is urgent to return the signal, it can only wait for 4 subframes before returning HARQ. This will result in the delay for 5G application. Therefore, by scheduling each user's return time priority and tailoring the return time according to the different requirements of each user, each user can have the best user experience. Moreover, in 4G LTE, the combination of RU and L1 can only serve up to 16 user devices at the same time, so the number is not enough to support the huge number of 5G users. Therefore, we propose a new RU and L1 architecture design for this problem. This study physically implements the Soft-PHY time-sensitive RU architecture for the URLLC and it satisfies the requirement of low latency for URLLC.

摘要 III Abstract IV 誌謝 V 目錄 VII 圖目錄 VII 表目錄 IX 第1章 簡介 1 1.1 研究背景與動機 1 1.2 論文架構 2 第2章 5G軟體架構 3 2.1 5G三大領域 3 2.2 3GPP第三代合作夥伴計畫 5 2.3 5G開發平台 7 2.4 5G與4G LTE差異 9 第3章 PHY層下行流程與Pthread介紹 37 3.1 OAI概述 37 3.2 OAI的PHY層流程 39 3.3 API Pthreads概述 42 第4章 新架構設計 49 4.1 HARQ新架構設計 49 4.2 RU新架構設計 52 第5章 結論與未來研究方向 55 5.1 結論 55 5.2 未來研究方向 56 參考文獻 57

[1] 3GPP, “5G NR; Physical Channels and Modulation,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, 12 2018, version 15.4.0.
[2] 3GPP, “5G NR; Base Station (BS) Radio Transmission and Reception,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.104, 12 2018, version 15.4.0
[3] 3GPP, “5G NR; Multiplexing and Channel Coding,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.212, 12 2018, version 15.4.0.
[4] 3GPP, “5G NR; Physical Layer Procedures for Control,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.213, 12 2018, version 15.4.0.
[5] 3GPP, “5G NR; Physical Layer Measurements,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.215, 12 2018, version 15.4.0.
[6] 3GPP, “5G NR; Physical Channels and Modulation,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.215, 12 2018, version 15.4.0.
[7] 3GPP, “5G NR; Radio Resource Control (RRC); Protocol Specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.331, 12 2018, version 15.4.0.
[8] HUAWEI, “White Paper: 5G Network Architecture - A High-Level Perspective,” HUAWEI TECHNOLOGIES CO., LTD, https://www-file.huawei.com/media/CORPORATE/PDF/mbb/5g_nework_architecture_whitepaper_en.pdf?la=en.
[9] IEEE 5G, “IEEE 5G and Beyond Technology Roadmap White Paper,” IEEE 5G, https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf.
[10] L. Chiaraviglio, L. Amorosi, N. Blefari-Melazzi, P. Dell’Olmo, C. Natalino and P. Monti, "Optimal Design of 5G Networks in Rural Zones with UAVs, Optical Rings, Solar Panels and Batteries," 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, 2018, pp. 1-4.
[11] L. Gimenez, “Mobility Management for Cellular Networks – From LTE Towards 5G,” Aalborg Universitet, Denmark, 2017.
[12] B. Akshita, “Modulation Schemes for Future 5G Cellular Networks,” IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC) vol. 8, no. 1, Jan. 2018.
[13] K. Saeed, M. Luke, and K. I. Pedersen, “Flexible Multi-Bit Feedback Design for HARQ Operation of Large-Size Data Packet in 5G,” IEEE Proceedings of VTC-2017 spring, 2017.
[14] D. Soldani, “5G Beyond Radio Access – a Flatter Sliced Network,” Mondo Digitale, AICA, Mar. 2018.
[15] Nokia White Paper, “5G Technology Components,” https://networks.nokia.com/innovation/5g.
[16] 3rd Generation Partnership Project, “System Architecture for the 5G System; Stage 2,” 3GPP.
[17] 3rd Generation Partnership Project, “Study on New Radio (NR) Access Technology,” 3GPP.
[18] A. Umesh, W. Hapsari, T. Uchino, T. Toeda, and H. Takahashi, “5G Radio Access Network Standardization Trends,” NTT DOCOMO Technical Journal, vol. 19 no. 3, Jan. 2018.
[19] A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance Analysis of Openairinterface System Emulation,” Future Internet of Things and Cloud (FiCloud), Rome, Italy, Aug. 24-26, 2015, pp. 662-669.
[20] N. Nikaein, M. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet, “Openairinterface: a Flexible Platform for 5G Research,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, Oct. 2014.
[21] S. Grubisic, W. Carpes, J. Bastos, and G. Santos, “Association of a PSO Optimizer with a Quasi-3d Ray-Tracing Propagation Model for Mono and Multi-Criterion Antenna Positioning in Indoor Environments,” IEEE Trans. Magnetics, vol. 49, no. 5, pp. 1645-1648, 2013.
[22] S. K. Mylonas, D. G. Stavrakoudis, J. B. Theocharis, and P. A. Mastorocostas, “Classification of Remotely Sensed Images Using the Genesis Fuzzy Segmentation Algorithm,” IEEE Trans. Geoscience and Remote Sensing, vol. 53, no. 10, pp. 5352-5376, 2015.
[23] R. Wang, Y. Peng, H. Qu, W. Li, H. Zhao, and B. Wu, “Openairinterface-an Effective Emulation Platform for LTE and LTE-Advanced,” Ubiquitous and Future Networks (ICUFN), Shanghai, China, July 8-11, 2014, pp. 127-132.
[24] H. Gao, W. B. Xu, J. Sun, and Y. L. Tang, “Multilevel Thresholding for Image Segmentation Through an Improved Quantum-Behaved Particle Swarm Algorithm,” IEEE Trans. Instrumentation and Measurement, vol. 59, no. 4, pp. 934-946, 2010.
[25] C. Li, S. Yang, and T. T. Nguyen, “A Self-Learning Particle Swarm Optimizer for Global Optimization Problems,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 3, pp. 627-646, 2012.
[26] M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geoscience and Remote Sensing, vol. 30, no. 1, pp. 2-27, 1992.
[27] T. Talib, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On Multi-Access Edge Computing: a Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.
[28] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network Slices Toward 5G Communications: Slicing the LTE Network,” IEEE Communications Magazine, vol. 55, no. 8, pp. 146-154, 2017.
[29] D. Boviz, C. S. Chen, and S. Yang, “Effective Design of Multi-User Reception and Fronthaul Rate Allocation in 5G Cloud RAN,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 8 pp. 1825-1836, Aug. 2017.
[30] C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN Architecture: a Comparison of Multiple Optical Fronthaul Networks,” Optical Network Design and Modeling (ONDM), Budapest, Hungary, May 15-17, 2017.
[31] G. Mountaser, M. L. Rosas, T. Mahmoodi, and M. Dohler, “On the Feasibility of MAC and PHY Split in Cloud RAN,” Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, March 19-22, 2017.
[32] H. J. Son and M. M. Do, “Mobile Network Architecture for 5G Era - New C-RAN Architecture and Distributed 5G Core,” Oct. 6, 2015.
[33] Y. J. Zheng, H. F. Ling, J. Y. Xue, and S. Y. Chen, “Population Classification in Fire Evacuation: a Multiobjective Particle Swarm Optimization Approach,” IEEE Trans. Evolutionary Computation, vol. 18, no. 1, pp. 70-81, 2014.
[34] “OAI Gitlab,” https://gitlab.eurecom.fr/oai/openairinterface5g.
[35] X. Wei, H. Liu, Z. Geng, K. Zheng, R. Xu, Y. Liu, and P. Chen, “Software Defined Radio Implementation of a Non-Orthogonal Multiple Access System Towards 5G,” IEEE Access, vol. 4, pp. 9604-9613, Dec. 9, 2016.
[36] F. Kaltenberger, R. Knopp, M. Danneberg, and A. Festag, “Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems,” Networks and Communications (EuCNC), Paris, France, June 29-July 2, pp. 497-501.
[37] C. Y. Yeoh, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan, “Performance Study of LTE Experimental Testbed Using Openairinterface,” Advanced Communication Technology (ICACT), Pyeongchang, South Korea, Jan. 31-Feb. 3, 2016, pp. 617-622.
[38] F. Kaltenberger, R. Knopp, N. Nikaein, D. Nussbaum, L. Gauthier, and C. Bonnet, “Openairinterface: Open-Source Software Radio Solution for 5G,” European Conference on Networks and Communications (EuCNC), Paris, France, June 29-July 2, 2015.
[39] D. Muirhead, M. A. Imran, and K. Arshad, “Insights and Approaches for Low-Complexity 5G Small-Cell Base-Station Design for Indoor Dense Networks,” IEEE Access, vol. 3, pp. 1562-1572, Aug. 27, 2015.
[40] P. K. Mishra, S. Pandey, and S. K. Biswash, “Efficient Resource Management by Exploiting D2D Communication for 5G Networks,” IEEE Access, vol. 4, pp. 9910-9922, Sep. 7, 2016.
[41] S. Schwarz and M. Rupp, “Exploring Coordinated Multipoint Beamforming Strategies for 5G Cellular,” IEEE Access, vol. 2, pp. 930-946, Aug. 29, 2014.
[42] “ShareTechnote,” http://www.sharetechnote.com/.
[43] “LTE University,” http://lteuniversity.com/.
[44] “2CM,” https://www.2cm.com.tw/2cm/.

無法下載圖示 全文公開日期 2024/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE