簡易檢索 / 詳目顯示

研究生: Nurhusna Aulia Laksono
Nurhusna Aulia Laksono
論文名稱: 固態鋰離子電池用聚偏二氟乙烯和聚乙烯醇基聚合物的合成與表徵
Synthesis and Characterization of Polyvinylidene Fluoride and Polyvinyl Alcohol-Based Polymers for Solid State Lithium-Ion Battery
指導教授: 陳崇賢
Chern, Chorng-Shyan
Quoc-Thai Pham
Quoc-Thai Pham
口試委員: 許榮木
Xu Rongmu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 78
中文關鍵詞: 鋰離子電池固體聚合物電解質PVDF
外文關鍵詞: Lithium-ion battery, Solid Polymer Electrolyte, PVDF
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著電子產品需求的增加,對儲能的需求也在增加。鋰離子電池是已經商業化的儲能裝置之一。商用鋰離子電池有幾個缺點,其中之一是安全問題,因為商用鋰離子電池使用的液體電解質使用的有機溶劑易燃、易爆且易於洩漏電解質。因此,在這項工作中,使用固體聚合物電解質 (SPE) 來減少這些缺點,合成了一種由 PVDF 和 CN-PVA-SO3 的混合物製成的 SPE。製備了PVDF和CN-PVA-SO3不同質量比的SPE,此外還製備了添加液體添加劑和固體添加劑的SPE。這些 SPE 的特點是傅里葉變換紅外光譜 (FTIR)、和拉伸強度。 PVDF與CN-PVA-SO3的最佳質量比為9:1,室溫下離子電導率為2.79 x 10-4 S/cm,離子遷移數為0.18,在極化500次循環時穩定。然後將此SPE應用於鈕扣電池,初始放電容量為155.98 mAh/g,庫侖效率~99%,循環129次後容量保持率為70.34%。


With the increasing demand for electronic goods, the need for energy storage is also increasing. The lithium-ion battery is one of the energy storage devices that has been commercialized. Commercial lithium-ion batteries have several drawbacks, one of which is safety concerns because commercial lithium-ion batteries use a liquid electrolyte that uses organic solvents that are flammable, explosive, and easy to leak electrolyte. So, in this work, a solid polymer electrolyte (SPE) was used to reduce these drawbacks, an SPE made of a mixture of PVDF and CN-PVA-SO3 was synthesized. SPEs with different mass ratios between PVDF and CN-PVA-SO3 have been made, in addition, SPEs with the addition of liquid additives and solid additives have also been made. Those SPEs were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Tensile strength. The optimal mass ratio between PVDF and CN-PVA-SO3 is 9:1 with the ionic conductivity of 2.79 x 10-4 S/cm at room temperature, ion transference number of 0.18, and stable during polarization up to 500 cycles. Then this SPE is applied to the coin cell, the initial discharge capacity of 155.98 mAh/g with coulombic efficiency ~99%, and the capacity retention after 129 cycles become 70.34%.

抽象的 i ABSTRACT ii ACKNOWLEDGEMENT iii TABLE OF CONTENT v LIST OF TABLES viii LIST OF FIGURES ix CHAPTER I INTRODUCTION 1 I. 1. BACKGROUND 1 I. 2. OBJECTIVES 4 CHAPTER II LITERATURE REVIEW 5 II. 1. BATTERY TYPES 5 II. 2. ELECTROLYTES 8 II. 3. SOLID POLYMER ELECTROLYTES 9 II.3.1. PVDF Based SPE 9 II. 4. ADDITIVES IN SOLID POLYMER ELECTROLYTES 10 II.4.1. Liquid Additives 10 II.4.2. Solid Additives 11 CHAPTER III EXPERIMENTAL 13 III. 1. MATERIALS 13 III. 2. EQUIPMENT AND INSTRUMENTS 14 III. 3. EXPERIMENTAL PROCEDURES 15 III.3. 1. SYNTHESIS OF POLYMER COMPOSITE OF PVDF AND CN-PVA-SO3 15 III.3. 2. CELL PREPARATION FOR ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) MEASUREMENTS 16 III.3. 3. CELL PREPARATION FOR LINEAR SWEEP VOLTAMMETRY (LSV) MEASUREMENTS 17 III.3. 4. CELL PREPARATION FOR ION TRANSFERENCE NUMBER (ITN) MEASUREMENTS 17 III.3. 5. CATHODE PREPARATION 18 III.3. 6. LITHIUM-ION BATTERY CELL PREPARATION 18 III. 4. CHARACTERIZATION TECHNIQUES 19 III.5. 1. Tensile Strength 19 III. 5. CALCULATION 19 III.6. 1. IONIC CONDUCTIVITY 19 III.6. 2. ION TRANSFERENCE NUMBER 21 III.6. 3. SOLID-STATE BATTERY 22 CHAPTER IV RESULT AND DISCUSSION 23 IV. 1. CHARACTERIZATION 23 IV.1. 1. Fourier Transform Infrared Spectroscopy (FTIR) 23 IV.1. 2. Tensile Strength 24 IV. 2. ELECTROCHEMICAL PROPERTY 26 IV.2. 1. Ionic Conductivity 27 IV.2. 2. Ion Transference Number 33 IV.2. 3. Oxidation Stability 41 IV. 3. SOLID-STATE Li-ION BATTERY 42 CONCLUSION 53 REFERENCES 55

(1) Xu, C.; Sun, B.; Gustafsson, T.; Edström, K.; Brandell, D.; Hahlin, M. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. Journal of Materials Chemistry A 2014, 2 (20), 7256-7264.
(2) Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
(3) Electronic Products Market 2021 - By Type (Audio And Video Equipment And Semiconductor), By End-Use (Business To Business (B2B) And Business To Customer (B2C)), By Sales Channel (OEM And Aftermarket), By Mode Of Sale (Offline And Online), And By Region, Opportunities And Strategies – Global Forecast To 2030. The Business Research Company, 2021. https://www.thebusinessresearchcompany.com/report/electronic-products-market#:~:text=The%20global%20electronic%20products%20market,at%20a%20rate%20of%206.8%25. (accessed 2021 September 2021).
(4) Lee, H. J.; Kim, S. B.; Park, Y. J. Effect of Li-La-Ti-O Coating Concentration on Electrochemical Performances of Li [Ni0. 3Co0. 4Mn0. 3] O2 Cathode. In ECS Meeting Abstracts, 2010; IOP Publishing: p 204.
(5) Perdana, F. A. Baterai Lithium. INKUIRI: Jurnal Pendidikan IPA 2021, 9 (2), 113. DOI: 10.20961/inkuiri.v9i2.50082.
(6) Tripathi, S. L.; Alvi, P. A.; Subramaniam, U. Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions; John Wiley & Sons, 2021.
(7) Rajendra, H. B. Studies Towards All Solid-State Batteries with Garnet-type Solid Electrolytes and Lithium Metal Anode. Nagasaki University (長崎大学), 2017. Huang, X. Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry 2011, 15 (4), 649-662.
(8) Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019, 5 (9), 2326-2352.
(9) Huang, Z.-H.; Tsai, D.-S.; Chiu, C.-J.; Pham, Q.-T.; Chern, C.-S. A lithium solid electrolyte of acrylonitrile copolymer with thiocarbonate moiety and its potential battery application. Electrochimica Acta 2021, 365, 137357.
(10) Pappenfus, T. M.; Henderson, W. A.; Owens, B. B.; Mann, K. R.; Smyrl, W. H. Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. Journal of the electrochemical society 2004, 151 (2), A209.
(11) Ding, W.; Wei, C.; Wang, S.; Zou, L.; Gong, Y.; Liu, Y.; Zang, L. Preparation and properties of a high-performance EOEOEA-based gel-polymer-electrolyte lithium battery. Polymers 2019, 11 (8), 1296.
(12) Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. Journal of power sources 2010, 195 (9), 2419-2430.
(13) Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X. Review on polymer-based composite electrolytes for lithium batteries. Frontiers in chemistry 2019, 7, 522.
(14) Fenton, D. Complexes of alkali metal ions with poly (ethylene oxide). polymer 1973, 14, 589.
(15) Anggraeni, D. Aplikasi Teknologi Baterai Li-Ion pada Pesawat Udara. 2021.
(16) Besenhard, J. O. Handbook of battery materials; John Wiley & Sons, 2008.
(17) Linden's Handbook of Batteries; McGraw-Hill Education, 2019.
(18) Zhou, Q. Thermophysical and Transport Properties of Ionic Liquid-LiX Mixtures. 2011.
(19) Zhu, J. Novel design and synthesis of structured iron oxides for battery applications; Wayne State University, 2016.
(20) Fabbri, G.; Paschero, M.; Cardoso, A.; Boccaletti, C.; Mascioli, F. F. A genetic algorithm based battery model for stand alone radio base stations powering. In 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), 2011; IEEE: pp 1-8.
(21) Linden, D. Handbook of batteries. In Fuel and energy abstracts, 1995; Vol. 4, p 265.
(22) IEEE Guide for the Characterization and Evaluation of Lithium-Based Batteries in Stationary Applications. IEEE Std 1679.1-2017 2018, 1-47. DOI: 10.1109/IEEESTD.2018.8262521.
(23) Yu, Y. Sodium-Ion Batteries: Energy Storage Materials and Technologies; John Wiley & Sons, 2022.
(24) Gong, D.; Gao, Y.; Kou, Y.; Wang, Y. Early prediction of cycle life for lithium-ion batteries based on evolutionary computation and machine learning. Journal of Energy Storage 2022, 51, 104376.
(25) Choe, H.; Carroll, B.; Pasquariello, D.; Abraham, K. Characterization of some polyacrylonitrile-based electrolytes. Chemistry of materials 1997, 9 (1), 369-379.
(26) GUODONG, X. SP3 BORON SINGLE ION ELECTROLYTES FOR LITHIUM ION BATTERY APPLICATION. 2015.
(27) Chen, H.; Zheng, M.; Qian, S.; Ling, H. Y.; Wu, Z.; Liu, X.; Yan, C.; Zhang, S. Functional additives for solid polymer electrolytes in flexible and high‐energy‐density solid‐state lithium‐ion batteries. Carbon Energy 2021, 3 (6), 929-956.
(28) Schaefer, J. L.; Lu, Y.; Moganty, S. S.; Agarwal, P.; Jayaprakash, N.; Archer, L. A. Electrolytes for high-energy lithium batteries. Applied Nanoscience 2012, 2 (2), 91-109.
(29) Zhang, J.; Huang, X.; Wei, H.; Fu, J.; Huang, Y.; Tang, X. Effect of surface modified porous inorganic-organic hybrid polyphosphazene nanotubes on the properties of polyethylene oxide based solid polymer electrolytes. Electrochimica acta 2010, 55 (20), 5966-5974.
(30) Torriero, A. A. Electrochemistry in ionic liquids; Springer, 2015.
(31) Li, M.; Yang, L.; Fang, S.; Dong, S. Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature. Journal of membrane science 2011, 366 (1-2), 245-250.
(32) González, F.; Tiemblo, P.; García, N.; Garcia-Calvo, O.; Fedeli, E.; Kvasha, A.; Urdampilleta, I. High performance polymer/ionic liquid thermoplastic solid electrolyte prepared by solvent free processing for solid state lithium metal batteries. Membranes 2018, 8 (3), 55.
(33) Ye, Q.; Liang, H.; Wang, S.; Cui, C.; Zeng, C.; Zhai, T.; Li, H. Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries. Journal of Energy Chemistry 2022, 70, 356-362.
(34) Wang, F.; Li, L.; Yang, X.; You, J.; Xu, Y.; Wang, H.; Ma, Y.; Gao, G. Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustainable Energy & Fuels 2018, 2 (2), 492-498. DOI: 10.1039/c7se00441a.
(35) Lu, J.; Liu, Y.; Yao, P.; Ding, Z.; Tang, Q.; Wu, J.; Ye, Z.; Huang, K.; Liu, X. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chemical Engineering Journal 2019, 367, 230-238. DOI: 10.1016/j.cej.2019.02.148.
(36) Croce, F.; Appetecchi, G.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394 (6692), 456-458.
(37) Nan, C.-W.; Fan, L.; Lin, Y.; Cai, Q. Enhanced Ionic Conductivity of Polymer Electrolytes Containing Nanocomposite S i O 2 Particles. Physical review letters 2003, 91 (26), 266104.
(38) Aravindan, V.; Vickraman, P. Characterization of SiO2 and Al2O3 incorporated PVdF‐HFP based composite polymer electrolytes with LiPF3 (CF3CF2) 3. Journal of Applied Polymer Science 2008, 108 (2), 1314-1322.
(39) Liang, B.; Tang, S.; Jiang, Q.; Chen, C.; Chen, X.; Li, S.; Yan, X. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochimica Acta 2015, 169, 334-341.
(40) Lin, D.; Yuen, P. Y.; Liu, Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A silica‐aerogel‐reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Advanced materials 2018, 30 (32), 1802661.
(41) Pal, P.; Ghosh, A. Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochimica Acta 2018, 260, 157-167.
(42) Yang, J.; Wan, H.-L.; Zhang, Z.-H.; Liu, G.-Z.; Xu, X.-X.; Hu, Y.-S.; Yao, X.-Y. NASICON-structured Na3. 1Zr1. 95Mg0. 05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Metals 2018, 37 (6), 480-487.

無法下載圖示 全文公開日期 2024/09/18 (校內網路)
全文公開日期 2024/09/18 (校外網路)
全文公開日期 2024/09/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE