簡易檢索 / 詳目顯示

研究生: 陳昶志
Chang-Chih Chen
論文名稱: 二維奈米結構CuxZnySnzS之合成與性質研究探討
Synthesis and Study the CuxZnySnzS 2D nanomaterials
指導教授: 戴龑
Yian Tai
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 熱注入合成法銅鋅錫硫化合物二維結構材料液相剝離法
外文關鍵詞: Hot injection method, CZTS material, 2D nanomaterials, Langmuir-Blodgett technique
相關次數: 點閱:241下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用熱注入合成法(Hot injection method)合成片狀CZTS產物,以Copper(II) acetate hydrate、Zinc acetate、Tin(IV) chloride為前驅物,Thiourea為硫源,並且以Ethylene glycol為反應溶劑進行合成,合成時間一個小時後即可獲得片狀CZTS產物。
再將產物以液相剝離法(Liquid phase exfoliation)進行聚集部分的展開與剝離,選擇以表面張力值47.70mN/m的Ethylene glycol為分散劑,因為具有一定的黏度性質可保護片狀結構避免被破壞,進行剝離過程使用震幅強度較大的探針式超聲波震盪機,結束後以串聯離心法分離片狀結構與尚未成功剝離的部分,並且依序收集不同面積大小的片狀產物。
最後利用Langmuir-Blodgett技術將片狀CZTS產物沉積於不同基板上,沉積過程以最佳參數表面壓為10mN/m的固態相進行成膜。最後分析鑑定沉積之片狀CZTS薄膜的表面型態、元素分布均勻性、單層CZTS厚度、表面親疏水性、化合物鑑定、光學與電學性質。


In this study, we synthesize 2D structure of CZTS compound by hot injection method. Utilizing copper(II) acetate hydrate, zinc acetate and tin(IV) chloride as cation metal precursor, and thiourea is sulfur precursor. 2D structure CZTS will be produced after reaction time reach 1h with argon condition and solvent is ethylene glycol.
Because strong van der Waals force between each layers structure of CZTS surface will cause part of product aggregation or stacking, we need to stretch or exfoliate CZTS layer before fabricate CZTS thin film on substrate. Here, we choose ethylene glycol with 47.70mN/m of surface tension as dispersion solvent while doing liquid phase exfoliation process. Due to similar surface tension between CZTS product and ethylene glycol. The other feature of ethylene glycol is higher viscosity, it can protect layer structure against destruction of ultra-sonication.
After exfoliation process is finish, we can control different centrifugation speed to remove aggregation product and collect different layer size-selection. Finally, deposit 2D CZTS structure on specific surface of substrate by Langmuir-Blodgett technique. The suitable parameter of surface pressure is 10mN/m. After that we analyze CZTS thin film layer property including surface morphology, uniformity, thickness, hydrophilicity, qualitative analysis, optics and electrical property.

摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1. 前言 1 1-2. 研究動機 2 第二章 文獻回顧 3 2-1. 銅鋅錫硫(Cu2ZnSnS4)四元半導體材料簡介 3 2-1-1. 銅鋅錫硫(Cu2ZnSnS4)化合物相關性質與結構 3 2-1-1-1. 化合物特性 3 2-1-1-2. 結構特性 5 2-1-2. 銅鋅錫硫(Cu2ZnSnS4)合成方法 8 2-1-2-1. 製程環境比較13 8 2-1-2-2. 不同合成條件控制與改變結構、大小、形狀與組成 9 2-2. 熱注入合成法(Hot injection method) 12 2-2-1. 熱注入法之合成機制27 12 2-2-2. 熱注入法之優勢 15 2-2-3. 熱注入法合成Cu2ZnSnS4與其他合成法比較 16 2-3-1. 二維奈米結構的發展 19 2-3-2. 二維奈米結構性質 20 2-3-3. 石墨烯家族 21 2-3-4. 金屬二硫族化合物與其氧化物 21 2-3-5. 二維奈米結構形成方法 24 2-3-6. 二維奈米結構相關應用 25 2-4. Langmuir-Blodgett沉積法簡介 27 2-4-1. Langmuir-Blodgett技術發展 28 2-4-2. Langmuir-Blodgett單分子層特性54 28 2-4-2-1. Langmuir單分子層形成原理 28 2-4-2-2. Langmuir單分子層之相變化 30 2-4-3. Langmuir-Blodgett單分子層之穩定性 32 2-4-3-1. 鬆弛行為 32 2-4-3-1. 遲滯行為 32 第三章 實驗方法與步驟 34 3-1. 實驗流程 34 3-2. 實驗藥品與耗材 35 3-3. 實驗儀器與裝置 36 3-4. 實驗方法 37 3-4-1. 熱注入法(Hot injection method)合成 37 3-4-2. 液相剝離法(Liquid phase exfoliation) 38 3-4-3. Langmuir-Blodgett技術排膜 39 3-5. 分析鑑定儀器 41 3-5-1. 紫外-可見光光譜儀 (UV-Visible Spectroscopy) 41 3-5-2. 拉曼振動光譜儀 (Raman spectroscopy) 41 3-5-3. X光繞射儀 (X-ray Diffraction, XRD) 42 3-5-4. 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 43 3-5-5. 場發射掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 44 3-5-6. 原子力顯微鏡 (Atomic Force Microscope, AFM) 45 3-5-7. 霍爾量測儀 (Hall effect measurement)56 47 第四章 實驗結果與討論 50 4-1. 熱注入法合成Cu2ZnSnS4化合物 50 4-1-1. 單次熱注入合成之不同總量的影響 50 4-1-2. 改變不同合成反應時間 53 4-2. 液相剝離法之分散與分離Cu2ZnSnS4化合物 60 4-2-1. 不同溶劑之分散性比較 60 4-2-2. 添加界面活性劑輔助分散 61 4-2-2-1. 添加界面活性劑輔助分散 62 4-2-2-2. 乙二醇溶劑為分散劑 68 4-3. 利用Langmuir-Blodgett技術沉積Cu2ZnSnS4片狀化合物 71 4-3-1. Langmuir-Blodgett混和液配製 71 4-3-2. Langmuir混和膜層之成膜性與穩定性 72 4-3-3. Langmuir混和膜層成膜後轉移至不同基板之表面型態 77 4-3-4. Langmuir-Blodgett 沉積之片狀CZTS薄膜性質探討 80 4-4. 片狀Cu2ZnSnS4薄膜之應用 93 4-4-1. 電觸媒應用 93 4-4-2. 鋰電池陽極材料應用 96 第五章 結論與未來展望 98 參考文獻 99

1. RadisavljevicB; RadenovicA; BrivioJ; GiacomettiV; KisA, Single-layer MoS2 transistors. Nat Nano 2011, 6 (3), 147-150.
2. Ghorpade, U.; Suryawanshi, M.; Shin, S. W.; Gurav, K.; Patil, P.; Pawar, S.; Hong, C. W.; Kim, J. H.; Kolekar, S., Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: A status review. Chemical Communications 2014, 50 (77), 11258-11273.
3. Siebentritt, S.; Schorr, S., Kesterites-a challenging material for solar cells. Progress in Photovoltaics: Research and Applications 2012, 20 (5), 512-519.
4. Haxel, G. B.; Hedrick, J. B.; Orris, G. J.; Stauffer, P. H.; Hendley Ii, J. W. Rare earth elements: critical resources for high technology; 087-02; 2002.
5. Abundance in Earth's crust: periodicity. https://www.webelements.com/periodicity/abundance_crust/.
6. Abe, K.; Shen, H.; Li, X.; Zhao, L.; Zhao, X.; Li, J.; Iwamoto, M.; Lin, H., Optical and electrical properties of uniform non-toxic Cu2ZnSnS4 nanocrystal and its application in solar cells. Polyhedron 2014, 82, 148-153.
7. (a) Lu, X.; Zhuang, Z.; Peng, Q.; Li, Y., Wurtzite Cu2ZnSnS4 nanocrystals: A novel quaternary semiconductor. Chemical Communications 2011, 47 (11), 3141-3143; (b) Chen, S.; Walsh, A.; Luo, Y.; Yang, J. H.; Gong, X. G.; Wei, S. H., Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Physical Review B - Condensed Matter and Materials Physics 2010, 82 (19).
8. (a) Goodman, C. H. L., The prediction of semiconducting properties in inorganic compounds. Journal of Physics and Chemistry of Solids 1958, 6 (4), 305-314; (b) Pamplin, B. R., A systematic method of deriving new semiconducting compounds by structural analogy. Journal of Physics and Chemistry of Solids 1964, 25 (7), 675-684.
9. Arul, N. S.; Yun, D. Y.; Lee, D. U.; Kim, T. W., Strong quantum confinement effects in kesterite Cu2ZnSnS 4 nanospheres for organic optoelectronic cells. Nanoscale 2013, 5 (23), 11940-11943.
10. Minlin Jiang, X. Y., Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects. In Solar Cells - Research and Application Perspectives, 2013; Vol. Chapter 5
11. Zhou, H.; Hsu, W. C.; Duan, H. S.; Bob, B.; Yang, W.; Song, T. B.; Hsu, C. J.; Yang, Y., CZTS nanocrystals: A promising approach for next generation thin film photovoltaics. Energy and Environmental Science 2013, 6 (10), 2822-2838.
12. Mitzi, D. B.; Gunawan, O.; Todorov, T. K.; Wang, K.; Guha, S., The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells 2011, 95 (6), 1421-1436.
13. 陳奕銘. 以 Cu2ZnSnS4 作為對電極材料於染料敏化太陽能電池之研究. 國立台灣科技大學, 2015.
14. Zoppi, G.; Forbes, I.; Miles, R. W.; Dale, P. J.; Scragg, J. J.; Peter, L. M., Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Progress in Photovoltaics: Research and Applications 2009, 17 (5), 315-319.
15. (a) Wibowo, R. A.; Lee, E. S.; Munir, B.; Kim, K. H., Pulsed laser deposition of quaternary Cu 2ZnSnSe 4 thin films. Physica Status Solidi (A) Applications and Materials Science 2007, 204 (10), 3373-3379; (b) Moholkar, A. V.; Shinde, S. S.; Babar, A. R.; Sim, K.-U.; Lee, H. K.; Rajpure, K. Y.; Patil, P. S.; Bhosale, C. H.; Kim, J. H., Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: Solar cells. Journal of Alloys and Compounds 2011, 509 (27), 7439-7446.
16. Xie, W.; Jiang, X.; Zou, C.; Li, D.; Zhang, J.; Quan, J.; Shao, L., Synthesis of highly dispersed Cu 2ZnSnS 4 nanoparticles by solvothermal method for photovoltaic application. Physica E: Low-Dimensional Systems and Nanostructures 2012, 45, 16-20.
17. Tian, Q.; Xu, X.; Han, L.; Tang, M.; Zou, R.; Chen, Z.; Yu, M.; Yang, J.; Hu, J., Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm 2012, 14 (11), 3847-3850.
18. (a) Guo, Q.; Ford, G. M.; Yang, W. C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R., Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. Journal of the American Chemical Society 2010, 132 (49), 17384-17386; (b) Guo, Q.; Hillhouse, H. W.; Agrawal, R., Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. Journal of the American Chemical Society 2009, 131 (33), 11672-11673; (c) Steinhagen, C.; Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B. A., Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. Journal of the American Chemical Society 2009, 131 (35), 12554-12555.
19. Rath, T.; Haas, W.; Pein, A.; Saf, R.; Maier, E.; Kunert, B.; Hofer, F.; Resel, R.; Trimmel, G., Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: Influence of reactants on the chemical composition. Solar Energy Materials and Solar Cells 2012, 101, 87-94.
20. Khare, A.; Wills, A. W.; Ammerman, L. M.; Norris, D. J.; Aydil, E. S., Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chemical Communications 2011, 47 (42), 11721-11723.
21. Li, M.; Zhou, W. H.; Guo, J.; Zhou, Y. L.; Hou, Z. L.; Jiao, J.; Zhou, Z. J.; Du, Z. L.; Wu, S. X., Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method. Journal of Physical Chemistry C 2012, 116 (50), 26507-26516.
22. Lin, X.; Kavalakkatt, J.; Kornhuber, K.; Abou-Ras, D.; Schorr, S.; Lux-Steiner, M. C.; Ennaoui, A., Synthesis of Cu 2Zn xSn ySe 1+x+2y nanocrystals with wurtzite-derived structure. RSC Advances 2012, 2 (26), 9894-9898.
23. Wei, H.; Ye, Z.; Li, M.; Su, Y.; Yang, Z.; Zhang, Y., Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: Experimental and first-principles calculations. CrystEngComm 2011, 13 (7), 2222-2226.
24. Singh, A.; Geaney, H.; Laffir, F.; Ryan, K. M., Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly. Journal of the American Chemical Society 2012, 134 (6), 2910-2913.
25. Wang, J. J.; Hu, J. S.; Guo, Y. G.; Wan, L. J., Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors. NPG Asia Materials 2012, 4 (1).
26. Kumar, M.; Dubey, A.; Adhikari, N.; Venkatesan, S.; Qiao, Q., Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells. Energy & Environmental Science 2015, 8 (11), 3134-3159.
27. De Mello Donegá, C.; Liljeroth, P.; Vanmaekelbergh, D., Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1 (12), 1152-1162.
28. 王心邑. 以熱注入法液相合成二硫化錫層狀奈米結構之分析及其光電特性之研究. 國立成功大學, 2015.
29. Wang, L.; Wang, W.; Sun, S., A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution(使用ethanol為capping reagent). Journal of Materials Chemistry 2012, 22 (14), 6553-6555.
30. Long, F.; Mo, S.; Zeng, Y.; Chi, S.; Zou, Z., Synthesis of flower-like CunSnSnanoflakes via a microwave-assisted solvothermal route. International Journal of Photoenergy 2014, 2014.
31. Wei, M.; Du, Q.; Wang, D.; Liu, W.; Jiang, G.; Zhu, C., Synthesis of spindle-like kesterite Cu 2ZnSnS 4 nanoparticles using thiorea as sulfur source. Materials Letters 2012, 79, 177-179.
32. Zhou, Y. L.; Zhou, W. H.; Du, Y. F.; Li, M.; Wu, S. X., Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Materials Letters 2011, 65 (11), 1535-1537.
33. Shi, L.; Pei, C.; Xu, Y.; Li, Q., Template-Directed Synthesis of Ordered Single-Crystalline Nanowires Arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of the American Chemical Society 2011, 133 (27), 10328-10331.
34. Shi, L.; Li, Q., Thickness tunable Cu2ZnSnSe4 nanosheets. CrystEngComm 2011, 13 (21), 6507-6510.
35. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191.
36. Yoffe, A. D., Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Advances in Physics 2001, 50 (1), 1-208.
37. (a) Bickley, R. I.; González-Carreño, T.; Palmisano, L.; Tilley, R. J. D.; Williams, J. M., Relative proportions of rutile and pseudo-brookite phases in the Fe(III)-TiO2 system at elevated temperature. Materials Chemistry and Physics 1997, 51 (1), 47-53; (b) Sun, Y.; Wu, C.; Long, R.; Cui, Y.; Zhang, S.; Xie, Y., Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature. Chemical Communications 2009, (30), 4542-4544; (c) Sun, Y.; Xie, Y.; Wu, C.; Zhang, S.; Jiang, S., Aqueous synthesis of mesostructured BiVO4 quantum tubes with excellent dual response to visible light and temperature. Nano Research 2010, 3 (9), 620-631.
38. Zhou, M.; Lou, X. W.; Xie, Y., Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today 2013, 8 (6), 598-618.
39. (a) Sivula, K.; Le Formal, F.; Grätzel, M., Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem 2011, 4 (4), 432-449; (b) Cho, I. S.; Chen, Z.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X., Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production. Nano Letters 2011, 11 (11), 4978-4984.
40. Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L., Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. Journal of the American Chemical Society 2012, 134 (10), 4473-4476.
41. (a) Xu, H.; Wang, W.; Zhu, W., Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties. The Journal of Physical Chemistry B 2006, 110 (28), 13829-13834; (b) Choi, K.-S., Shape Effect and Shape Control of Polycrystalline Semiconductor Electrodes for Use in Photoelectrochemical Cells. The Journal of Physical Chemistry Letters 2010, 1 (15), 2244-2250.
42. Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E., Graphene electrochemistry: Fundamental concepts through to prominent applications. Chemical Society Reviews 2012, 41 (21), 6944-6976.
43. 方程毅 二維材料新進展. http://case.ntu.edu.tw/blog/?tag=%E4%BA%8C%E7%B6%AD%E6%9D%90%E6%96%99.
44. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters 2010, 105 (13), 136805.
45. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013, 5 (4), 263-275.
46. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews 2015, 44 (9), 2757-2785.
47. Wu, S.; Huang, C.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano 2013, 7 (3), 2768-2772.
48. (a) Song, J.-G.; Park, J.; Lee, W.; Choi, T.; Jung, H.; Lee, C. W.; Hwang, S.-H.; Myoung, J. M.; Jung, J.-H.; Kim, S.-H.; Lansalot-Matras, C.; Kim, H., Layer-Controlled, Wafer-Scale, and Conformal Synthesis of Tungsten Disulfide Nanosheets Using Atomic Layer Deposition. ACS Nano 2013, 7 (12), 11333-11340; (b) Jin, Z.; Shin, S.; Kwon, D. H.; Han, S. J.; Min, Y. S., Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale 2014, 6 (23), 14453-14458.
49. Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y.; Lin, H.; Jeng, H.-T.; Mo, S.-K.; Hussain, Z.; Bansil, A.; Shen, Z.-X., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nano 2014, 9 (2), 111-115.
50. Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; Song, X.; Hwang, H. Y.; Cui, Y.; Liu, Z., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano 2013, 7 (10), 8963-8971.
51. (a) Zheng, J.; Zhang, H.; Dong, S.; Liu, Y.; Tai Nai, C.; Suk Shin, H.; Young Jeong, H.; Liu, B.; Ping Loh, K., High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat Commun 2014, 5; (b) Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O'Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G.; Chen, J.; Wang, J.; Minett, A. I.; Nicolosi, V.; Coleman, J. N., Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials 2011, 23 (34), 3944-3948; (c) Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331 (6017), 568-571; (d) Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N., Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 2012, 6 (4), 3468-3480; (e) Liu, J.; Zeng, Z.; Cao, X.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H., Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8 (22), 3517-3522.
52. Huang, G.; Chen, T.; Chen, W.; Wang, Z.; Chang, K.; Ma, L.; Huang, F.; Chen, D.; Lee, J. Y., Graphene-Like MoS2/Graphene Composites: Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small 2013, 9 (21), 3693-3703.
53. Zheng, Q.; Ip, W. H.; Lin, X.; Yousefi, N.; Yeung, K. K.; Li, Z.; Kim, J. K., Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 2011, 5 (7), 6039-6051.
54. 蔡惠榕. 以Langmuir-Blodgett 及自組裝技術製備奈米粒子單分子層薄膜及其在超疏水表面之應用. 國立成功大學, 2009.
55. Backes, C.; Szydłowska, B. M.; Harvey, A.; Yuan, S.; Vega-Mayoral, V.; Davies, B. R.; Zhao, P.-l.; Hanlon, D.; Santos, E. J. G.; Katsnelson, M. I.; Blau, W. J.; Gadermaier, C.; Coleman, J. N., Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano 2016, 10 (1), 1589-1601.
56. 黃瓊儀. 鋁誘發多晶矽結晶於自組裝單分子膜修飾基材之研究. 國立台灣科技大學, 2015.
57. Saravana Kumar, R.; Ryu, B. D.; Chandramohan, S.; Seol, J. K.; Lee, S.-K.; Hong, C.-H., Rapid synthesis of sphere-like Cu2ZnSnS4 microparticles by microwave irradiation. Materials Letters 2012, 86, 174-177.
58. Meza Avendaño, C. A.; Mathews, N. R.; Pal, M.; Delgado, F. P.; Mathew, X., Structural evolution of multilayer SnS/Cu/ZnS stack to phase-pure Cu2ZnSnS4 thin films by thermal processing. ECS Journal of Solid State Science and Technology 2015, 4 (3), P91-P96.
59. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008, 3 (9), 563-568.
60. Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I.; Lee, J.; Oh, K.; Choi, H.; Park, C., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat Commun 2015.
61. Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I.; Lee, J.; Oh, K.; Choi, H.; Park, C., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nature Communications 2015, 6.
62. PV-EDUCATION.ORG http://www.pveducation.org/pvcdrom/batteries/standard_potential.
63. Kush, P.; Deori, K.; Kumar, A.; Deka, S., Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(vi) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles. Journal of Materials Chemistry A 2015, 3 (15), 8098-8106.

QR CODE