簡易檢索 / 詳目顯示

研究生: 邱永紳
Yung-shen Chiu
論文名稱: 利用近接式曝光與立體光罩製作圓錐型微探針陣列模仁成型模擬之研究
The Simulation of Micro Probe Array Mold by Using The Microlens Mask Through Proximity Printing
指導教授: 林宗鴻
Tsung-Hung Lin
趙振綱
Ching-Kong Chao
口試委員: 張瑞慶
Rwei-Ching Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 124
中文關鍵詞: 立體光罩微探針陣列近接式曝光吸收率
外文關鍵詞: 3D-mask, micro-probe array, proximity exposure, absorptance
相關次數: 點閱:239下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用立體光罩(3D-mask)與近接式曝光(proximity exposure)製作圓錐型微探針陣列(micro-probe array)模仁。根據熱熔法(thermal reflow)的限制,定義出五種透鏡尺寸,其曲率半徑Rc之順序為:Lens C > Lens E > Lens D > Lens A > Lens B。孔徑光闌Daperture皆固定在0.5倍的透鏡直徑Dlens。光源為一個光通量120 Watt/m2的近紫外光波段。首先,藉由光學模擬軟體,分析出各透鏡所對應的曝光間隙g。接著,配合試片模型的設計,運算出不同等級的吸收輻照圖,建立出顯影後的微探針模仁輪廓。為了探討紫外光的能量分佈,本文定義出三組方案,方案一僅考慮折射係數n;方案二多考慮試片的消光係數k;而方案三考慮所有的材料光學性質,其理由為材料性質的組合會間接影響系統邊界條件。除此之外,影響微探針模仁外型之參數還包含:微透鏡尺寸、孔徑光闌Daperture、曝光間隙g。
在方案一,正光阻AZ4620無法吸收紫外光線的功率,故無法使光阻漂白(bleached);在方案二,微探針模仁直徑Dprobe之順序為:Lens E > Lens D > Lens C > Lens A > Lens B,微探針模仁高度Lprobe皆固定為12 μm;而在方案三,模仁直徑Dprobe的大小順序則為:Lens E > Lens C > Lens D > Lens B > Lens A,模仁高度Lprobe皆固定在10 μm。由模擬輸出得知,限制模仁高度Lprobe的原因為材料性質之組合,或光阻的吸收率(absorptance),其中方案三最接近實際的情況。模仁直徑Dprobe的主要限制為光線繞射的分佈,其參數權重大小順序:透鏡直徑Dlens > 透鏡高度h > 曝光間隙g,其中繞射程度與Dlens以及g成正比、與h成反比。最後,以方案三的條件進行光線追跡模擬,將Lens A系統中的孔徑光闌Daperture 縮小至0.2倍透鏡直徑Dlens,其輸出結果可獲得一個理想的微探針模仁幾何,Lprobe = 10 μm,Dprobe = 26 μm,AR (aspect ratio) = 0.4。


In this study, an mold of micro-probe array was fabricated by a 3D-mask with proximity exposure. By the limit of thermal reflow, five kinds of microlenses were defined. The ranking of radius of curvature (RC) of microlens: Lens C > Lens E > Lens D > Lens A > Lens B. The aperture stop (Daperture) was half of diameter of lens (Dlens). The source was ultraviolet light with a 120 Watt/m2 flux. The exposure gap was calculated from 3D-mask, and establish the geometry of the mold of micro-probe array by the absorbed irradiance maps of the different levels calculated with the designed model of positive photoresist AZ4620 by optical software, respectively. In order to discuss the energy of ultraviolet light, this study defined three cases for comparing. In Case 1, the refractive index (n) was only considered ; in Case 2, the extinction value (k) of specimen was also considered; in Case 3, the complex refractive index was all considered. Different combinations of material properties will influence boundary conditions of every exposure system. In addition, the other parameters of the shape of micro-probe included diameter (Dlens) and height (h) of micro-lens, sizes of aperture stop, exposure gap (g).
In Case 1, positive photoresist AZ4620 did not absorb any energy from UV light, so it wasn't bleached; in Case 2, the ranking of diameter of the mold of micro-probe (Dprobe): Lens E > Lens D > Lens C > Lens A > Lens B, and the depth of the mold of micro-probe (Lprobe) was 12 μm; in Case 3, the ranking of Dprobe: Lens E > Lens C > Lens D > Lens B > Lens A, and Lprobe was 10 μm. Through the outputs, the limit of Lprobe was the combination with different material properties, or the absorptance of positive photoresist. Case 3 was the most close to reality. Dprobe was limited by the range of diffraction. The ranking of the influence of parameters: Dlens > h > g. The diffraction effect is directly proportional to Dlens and g and is inversely proportional to h. (The larger Dlens and g are, the lager diffraction is, but the situation of h was upside down.) Finally, change Daperture into one fifth of Dlens, and simulate the system of Lens A with Case 3. The outputs were Lprobe =10μm, Dprobe =26μm, AR (aspect ratio)=0.4.

目錄 中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 符號索引 VI 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 1.3 微針陣列簡介 6 1.4 文獻回顧 7 1.4.1 蝕刻製程 12 1.4.2 LIGA製程 13 1.4.3 其它製程 14 1.5 研究目標 15 1.6 論文架構 16 第二章 基礎光學理論 18 2.1 幾何光學 19 2.1.1 司乃爾定律 20 2.1.2 單一球界面 22 2.1.3 造鏡者公式 25 2.1.4 賽德爾像差理論 27 2.1.5 三階波面像差係數 28 2.1.6 最小光散圈 33 2.2 繞射極限 34 2.3 薄膜光學 36 2.3.1 光學材料性質 36 2.3.2 光學界面性質 37 2.3.3 穿透率與反射率 39 2.3.4 光衰減率 41 第三章 模擬軟體操作 43 3.1 光學模擬軟體之設定 43 3.1.1 幾何光學分析軟體之設定 43 3.1.2 輻照度模擬軟體之設定 46 3.1.3 表面與體積散射 50 3.2 光源設定 52 3.3 光學參數設定 54 3.3.1 材料性質 54 3.3.2 表面性質 55 3.3.3 散射性質 58 第四章 系統設計與模擬 60 4.1 製作流程 60 4.1.1 立體光罩製作 61 4.1.2 微探針陣列製作 63 4.1.3 熱融法 65 4.2 曝光系統設計 67 4.2.1 微透鏡尺寸 68 4.2.2 試片模型 70 4.2.3 孔徑光闌 71 4.2.4 曝光間隙 75 4.2.5 透鏡間距 80 4.3 收斂性分析 85 第五章 模擬結果與討論 86 5.1 模擬結果 87 5.1.1 吸收輻照圖 87 5.1.2 微探針高度 94 5.1.3 微探針直徑 99 5.2 結果與討論 104 5.2.1 材料性質對微探針幾何之影響 104 5.2.2 微透鏡幾何對微探針幾何之影響 108 5.2.3 曝光間隙對微探針直徑之影響 109 5.2.4 模擬機制方案三之優勢 111 5.2.5 孔徑光闌對微探針直徑之影響 112 5.3 實驗結果與討論 115 第六章 結論與未來展望 119 6.1 結論 119 6.2 未來展望 120 參考文獻 121 作者簡介 124

參考文獻
[1] 景美科技股份有限公司- http://www.cmat-tek.com.tw/index.htm
[2] 楊素華、藍慶忠,「奈米碳管場發射顯示器」,科學發展,382期,第68-71頁(2004)
[3] 友達光電股份有限公司-http://www.auo.com/?sn=15&lang=zh-TW
[4] DEBIOTECH-http://www.debiotech.com/
[5] jewelPUMP-http://www.jewelpump.com/
[6] STMicroelectronics-http://www.st.com/internet/com/home/home.jsp
[7] W. Wang, S.A. Soper, Bio-MEMS: Technologies and Applications, CRC Press; 1 edition, pp.325–328 (2006).
[8] A. Davidson, B. Al-Qallaf, D.B. Das, Transdermal drug delivery by coated microneedles: Geometry effects on effective skin thickness and drug permeability, chemical engineering research and design 86, pp.1196–1206 (2008).
[9] S. Khumpuang, M. Horade, K. Fujioka, Susumu Sugiyama, Geometrical strengthening and tip-sharpening of a microneedle array fabricated by X-ray lithography, Microsyst Technol 13, pp. 209–214 (2007).
[10] J.H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery, Journal of Controlled Release 104, pp.51–66 (2005).
[11] J.H. Park, Y.K. Yoon, S.O. Choi, M.R. Prausnitz, M.G. Allen, Tapered Conical Polymer Microneedles Fabricated Using an Integrated Lens Technique for Transdermal Drug Delivery, IEEE Transactions on Biomedical Engineering, Vol. 54, No. 5, pp.903–913 (2007).
[12] Y. Xie, B. Xu, PhD, Y. Gao, Controlled transdermal delivery of model drug compounds by MEMS microneedle array, Nanomedicine: Nanotechnology, Biology, and Medicine 1, pp.184–190 (2005).
[13] K. Kim, J.B. Lee, High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector, Microsyst Technol 13, pp.231–235(2007).
[14] S.J. Moon, S.S. Lee, H.S. Lee, T.H. Kwon, Fabrication of microneedle array using LIGA and hot embossing process, Microsystem Technologies 11, pp.311–318(2005).
[15] E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, Bulk Micromachined Titanium Microneedles, Journal of microelectromechanical Systems, Vol. 16, No. 2, pp.289–295(2007).
[16] M.W. Wang, J.H. Jeng, Optimal Molding Parameter Design of PLA Micro Lancet Needles Using the Taguchi Method, Polymer-Plastics Technology and Engineering, 48, pp.730–735(2009).
[17] B. Stoeber, D. Liepmann, Arrays of Hollow Out-of-Plane Microneedles for Drug Delivery, Journal of Microelectromechanical Systems, Vol. 14, No. 3, pp.472–479(2005).
[18] N. Wilke, M.L. Reed, A. Morrissey, The evolution from convex corner undercut towards microneedle formation: theory and experimental verification, Journal of Micromechanics and Microengineering, 16, pp.808–814(2006).
[19] H.C. Kuo, Y.K. Shen, Y. Lin, S.C. Kang, Invasive PLA Microneedle Fabrication Applied to Drug Delivery System, Mechanic Automation and Control Engineering (MACE), 2011 Second International Conference, Taiwan, pp. 7437–7440(2011).
[20] J.W. Choi, I.B. Park, Y.M. Ha, M.G. Jung, S.D. Lee, S.H. Lee, Insertion Force Estimation of Various Microneedle Array-type Structures Fabricated by a Microstereolithography Apparatus, SICE-ICASE International Joint Conference, Bexco, Busan, Korea, pp. 3678–3681(2006).
[21] H. Mekaru, T. Takano, Demonstration of fabricating a needle array by the combination of x-ray grayscale mask with the lithografie, galvanoformung, abformung process, J. Micro/Nanolith. MEMS MOEMS 8(3), 033010 (2009).
[22] C.H. Ji, F. Herrault, M.G. Allen, Micro projection lithography using microlens on a mask, J. Micromech. Microeng. 19, 127003(6pp) (2009).
[23] 電磁波-http://zh.wikipedia.org/wiki/%E9%9B%BB%E7%A3%81%E6%B3%A2
[24] E. Hecht, OPTICS (4th Edition), Addison Wesley, pp.149–155(2001).
[25] E. Hecht, OPTICS (4th Edition), Addison Wesley, pp.156–159(2001).
[26] E. Hecht, OPTICS (4th Edition), Addison Wesley, pp.253–268(2001).
[27] 林潔,「聚焦透鏡設計與成像分析」,碩士論文,國立成功大學,台南 (2010)。
[28] J. Chen, C. Radu, A. Puri, Aberration-free negative-refractive-index lens, Applied Physics Letters 88, 071119 (2006).
[29] K.K. Sharma, Optics: Principles and Applications, Academic Press, 1 edition, pp. 217–234 (2006).
[30] Amateur Telescope Optics- http://www.telescope-optics.net/index.htm#TABLE_OF_CONTENTS
[31] Y.C. Lee, C.M. Chen, C.Y. Wu, Spherical and Aspheric Microlenses Fabricated by Excimer Laser LIGA-like Process, Journal of Manufacturing Science and Engineering, Volume 129, Issue 1, pp.126–134 (2007).
[32] 龍文安,半導體微影技術,五南圖書出版公司,台灣,第209-221頁(2004)。
[33] Y. Taki, Film structure and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography, Vacuum 74, pp.431–435 (2004).
[34] 菲涅耳方程式- http://zh.wikipedia.org/wiki/%E8%8F%B2%E6%B6%85%E8%80%B3%E6%96%B9%E7%A8%8B
[35] D.K. Schroder, Semiconductor Material and Device Characterization, Wiley
-Interscience, 2 edition, pp.585–592 (1988).
[36] P.O. Logerais, A. Bouteville, Modelling of an infrared halogen lamp in a rapid thermal system, International Journal of Thermal Sciences 49, pp.1437–1445 (2010).
[37] 龍文安,半導體微影技術,五南圖書出版公司,台灣,第224-225頁(2004)。
[38] D.K. Sardar, M.L. Mayo, Anthony Sayka, Raylon M. Yow, Optical Characterization of Positive Photoresist, Semiconductor International; 24, 6; ProQuest, pp.163–174 (2001).
[39] Lambda Research-http://www.lambdares.com/
[40] J.C. Jonsson, M.D. Rubin, A.M. Nilsson, A. Jonsson, A. Roos, Optical characterization of fritted glass for architectural applications, Optical Materials Volume 31, Issue 6, pp.949–958 (2009).
[41] K.Y. Hung, F.G. Tseng, H.P. Chou, Application of 3D gray mask for the fabrication of curved SU-8 structures, Microsystem Technologies Volume 11, pp.365-369 (2005).
[42] AZ Electronic Materials-http://www.az-em.com/
[43] Virginia Semiconductor Inc-http://www.virginiasemi.com/
[44] S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, Enhanced dill exposure model for thick photoresist lithography, Microelectronic Engineering Volumes 78–79, pp.490–495 (2005).
[45] MicroChemicals-http://www.microchemicals.eu/technical_information/
[46] Lambda Research -TracePro 7.0 User’s Manual
[47] R. Voelkel, M. Eisner, C. Ossmann, K. J. Weible, Refractive microlenses for ultraflat photolithographic projection systems, Proceedings / Volume 4179 / Applications of Micro-optics I, Santa Clara, CA, USA, Proc. SPIE 4179, pp.130–136 (2000).
[48] H.T. Hsieh, V. Lin, J.L. Hsieh, G.-D.J. Su, Design and fabrication of long focal length microlens arrays, Optics Communications 284, pp.5225–5230 (2011).
[49] 闕明珠,「微透鏡陣列製程分析」,碩士論文,國立中央大學,中壢 (2005)。
[50] 施宏錡,「製作新型高填充率雙曲率微透鏡與用於有機發光二極體之研究」,碩士論文,國立台灣科技大學,台北 (2010)。
[51] P.C. Chang, S.J. Hwang, Simulation of infrared rapid surface heating for injection molding, International Journal of Heat and Mass Transfer Volume 49, Issues 21–22, pp.3846–3854 (2006).
[52] F.H. Dill, W.P. Hornberger, P.S. Hauge, J.M. Shaw, Characterization of positive photoresist, IEEE Transactions on Electron Devices, Vol. ED-22, No. 7, pp.445–452 (1975).
[53] 郭雅欣,「跨入16奈米世代一步到位」,科學人,第97期,3月號,第52-55頁(2010)。
[54] E.F. Reznikova, J. Mohr, H. Hein, Deep photo-lithography characterization of SU-8 resist layers, Microsystem Technologies 11, pp.282–291 (2005).

QR CODE