簡易檢索 / 詳目顯示

研究生: 溫凱翎
Kai-ling Wen
論文名稱: 混凝土添加飛灰及爐石在高溫環境下之硬固性質及熱傳行為
Hardened Properties and Thermal Conduction of Concrete with Fly Ash and Slag Additions under High Ambient Temperature
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳振川
Jenn-Chuan Chern
楊仲家
Chung-Chia Yang
楊錦懷
Chin-Huai Young
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 160
中文關鍵詞: 飛灰爐石粉蒸氣養護熱傳導
外文關鍵詞: fly ash, slag, steam curing, thermal conduction
相關次數: 點閱:277下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以相同之水膠比(W/B = 0.6),利用飛灰及爐石粉取代水泥,探討飛灰及爐石粉在蒸氣養護環境下,對混凝土性質之影響。並製作7 × 7 × 55 cm之單方向溫度加熱試體,探討飛灰及爐石粉對混凝土熱傳行為的影響,及比較混凝土受熱後距離加熱面不同距離處之硬固性質。
    研究結果顯示:(1) 高溫養護加速水化作用與卜作嵐反應之進行,因此,經過蒸氣養護之混凝土,其三天抗壓強度均高於相同配比水養護之混凝土,隨著卜作嵐材料取代量的增加,此情形更為明顯,其中又以飛灰取代水泥之效果較為顯著。 (2) 添加飛灰之混凝土,在高溫養護後其表面電阻係數明顯高於水養護混凝土,且隨飛灰取代量的增加有大幅提升的趨勢。 (3) 混凝土在新拌階段之升溫速率明顯高於硬固後之混凝土,顯示飽和度與混凝土的熱傳導率成正比。 (4) 在28天之後,可以明顯看出爐石粉取代水泥30%之混凝土(S30),其熱傳速率明顯低於其他組別的混凝土,飛灰取代30%及爐石粉取代15%次高,飛灰取代15%、常重混凝土及水泥砂漿熱傳導率則最高。 (5) 沿軸向單向加熱試體各區段之間,混凝土硬固性質並沒有明顯的差異,此乃在實驗過程的後期,混凝土試體亦承受周遭側向熱傳的影響。


    This research used the same water-binder ratio (W/B = 0.6) to study the effects of fly ash or slag on the properties of concrete under steam curing. This study also used a one-dimensional heating test module of 7 × 7 × 55 cm to study the effects of fly ash and slag on the thermal conduction of concrete, and to compare the difference of properties of harden concrete at the locations away from the heating surface.
    Experimental results show that: (1) The hydration and Pozzolanic reaction speeded up by steam curing, such that the 3-day compressive strength of steam-cured concrete was higher than that of the water cured, and this condition becomes more obvious with more Pozzolanic replacement, especially for fly ash; (2) The surface electrical resistivity of the steam-cured concrete with fly ash was much higher than the water-cured , and had a substantial increase with even higher fly ash replacement; (3) The thermal conducting speed of fresh concrete was obviously higher, which showed that the degree of saturation had a positive correlation with the thermal conductivity rate; (4) After 28 day, the thermal conductivity rate of concrete with the replacement of 30% slag was much lower than the others; the replacement of 30% fly ash (F30) and 15% slag (S15) were the next high, and the normal-weight concrete and mortar were the highest; (5) The difference in the properties of harden concrete at different layers in the one-dimensional heating test were not apparent, due to the fact that, during the earlier stage of the test, the concrete specimens were also subjected to the thermal conduction from the surrounding lateral surfaces.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 4 2.1 混凝土的熱學性質 4 2.2 混凝土的熱傳導性質 5 2.3 新拌混凝土的熱傳行為 6 2.4 硬固混凝土的熱傳行為 6 2.5 卜作嵐材料基本性質與影響 7 2.5.1 飛灰的來源與基本性質 10 2.5.2 飛灰對混凝土性質的影響 11 2.5.2.1 飛灰對混凝土新拌性質的影響 11 2.5.2.2 飛灰對混凝土硬固性質的影響 13 2.5.3 爐石粉的來源與基本性質 14 2.5.4 爐石粉對混凝土性質的影響 15 2.5.4.1 爐石粉對混凝土新拌性質的影響 15 2.5.4.2 爐石粉對混凝土硬固性質的影響 16 2.6 蒸氣養護的影響 18 2.6.1 溫度對水化速率之影響 18 2.6.2 溫度對孔隙的影響 19 2.6.3 溫度對強度的影響 19 第三章 試驗計畫 23 3.1 試驗內容與流程 23 3.2 試驗材料 23 3.3 試驗儀器 24 3.4 試驗項目及變數 27 3.4.1 試驗項目 27 3.4.2 試驗變數 28 3.4.3 試體編號 28 3.5 試驗方法 29 3.5.1 組成材料基本性質試驗 29 3.5.2 單方向溫度加熱試驗 29 3.5.3 混凝土性質試驗 30 3.5.4 甲醇氣體滲透試驗 .33 第四章 結果分析與討論 49 4.1 新拌混凝土性質 49 4.2 混凝土圓柱試體硬固性質 49 4.2.1 抗壓強度 49 4.2.2 動彈性模數與動剛性模數 52 4.2.3 超音波波速 53 4.2.4 表面電阻係數 54 4.3 單方向溫度加熱試驗 56 4.3.1 齡期對混凝土熱傳性質的影響 56 4.3.2 飛灰及爐石粉取代量對混凝土熱傳性質的影響 57 4.3.3 單方向溫度加熱對各區段混凝土硬固性質的影響 58 4.4 甲醇氣體滲透試驗 59 4.5 擴散方程式在單方溫度加熱試驗上的應用 60 4.5.1 熱擴散係數為定值 61 4.5.2 假設熱擴散係數不為常數 63 第五章 結論與建議 137 5.1 結論 137 5.2 建議 139 參考文獻 141 附錄A 熱傳導及擴散方程式理論探討 145

    1.黃兆龍,「混凝土性質與行為」,第三版,詹氏書局, 民國91年。
    2.Shin, K.-Y., S.-B. Kim, J.-H. Kim, M. Chung, P.-S. Jung, “Thermo-physical Properties and Transient Heat Transfer of Concrete at Elevated Temperatures,” Nuclear Engineering and Design, Vol. 212, No. 1-3, pp. 233-241, 2002.
    3.J. P. Holman, "Heat Transfer", 9th ed., McGraw-Hill Book Company, 2002.
    4.張道光,「高溫高壓對高性能混凝土性質影響之研究」,碩士論文,國立台灣工業技術學院,民國84年。(指導教授:沈得縣博士)
    5.羅贈文,「玻纖、輸氣劑、輕質骨材對高性能混凝土熱傳導性質之影響」,碩士論文,國立台灣科技大學,民國87年。(指導教授:陳舜田博士)
    6.Cusson, Danial and Wellington L. Repette, “Early-Age Cracking in Reconstructed Concrete Bridge Barrier Walls,” ACI Material Journal, pp. 438~446, 2000.
    7.Nakamura, Hideaki, Sumio Hamada, Toshio Tanimoto, and Ayaho Miyamoto, “Estimation of Thermal Crack Resistance for Mass Concrete Structure with Uncertain Material Properties,” ACI Structure Journal, pp. 509~518, 1999.
    8.Liu, C., R. Meline, J. N. Lee, “Heat Removal From Mass Concrete Footing,” Transportation Research Record, No. 1798, 02-2883, pp. 39~42, 2002.
    9.歐書豪,「礦物摻料及蒸氣養護對不同配比水泥砂漿熱傳導性質之影響」,碩士論文,國立台灣科技大學,民國92年。(指導教授:張大鵬博士)
    10.Kim, J. K., K. H. Kim, J. K. Yang, “ Thermal Analysis of Hydration Heat in Concrete Structures with Pipe-cooling System,” Computers and Structures, Vol. 79, No.2, pp. l63-171, 2001.
    11.Hirth H. C., “Thermal Properties of Concrete at Extreme Temperatures,” Doctor of philosophy in Eny, inG, D, of The University of California, Berkeley, 1982.
    12.ACI Committee 211.1, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,” Manual of Concrete Practice, Part1, pp. 34, 1988.
    13.Kim, K. H., S. E. Jeon, J. K. Kim, S. C. Yang, “An Experimental Study on Thermal Conductivity of Concrete,” Cement and Concrete Research, V.33, No.3, pp. 363-371, 2003.
    14.Brown, T. D., and M. Y. Javiad, “Ther thermal Conductivity of Fresh Concrete,” Materials and Structures, V.3, No.18, pp. 416-441, 1970.
    15.蘇信宏,「混凝土凝結期間熱傳導性質與影響」,碩士論文,國立台灣科技大學,民國88年。(指導教授:張大鵬博士)
    16.張政豐,「高性能混凝土熱傳導性質之研究」,碩士論文,國立台灣工業技術學院,民國84年。(指導教授:陳舜田博士,沈進發博士)
    17.林維明,「結構用輕質混凝土性質」,結構工程,第七卷,第二期,pp. 89~119,民國81年。
    18.危時秀,「普通混凝土熱傳導性質之研究」,碩士論文,中原大學,民國91年。(指導教授:何仲明博士)
    19.張郁慧,「火害延時對混凝土材料性質之影響」,碩士論文,國立台灣工業技術學院,民國82年。(指導教授:陳舜田博士,沈進發博士)
    20.林建國,「無細輕質骨材混凝土性質之研究」,碩士論文,國立中興大學,民國89年。(指導教授:陳豪吉博士)
    21.黃兆龍,「高性能混凝土理論與實務」,詹氏書局,民國92年。
    22.ACI Committee 266, “Use of Fly Ash In Concrete,” ACI Materials Journal, Vol. 84, No. 5, pp. 381~409, 1987.
    23.莊昆斌,「蒸氣養護對不同爐石添加量自充填混凝土熱學性質及工程性質之研究」,碩士論文,國立台灣科技大學,民國93年。(指導教授:張大鵬博士)
    24.Demirboga, R., “Influence of Mineral Admixtures on Thermal Conductivity and Compressive Strength of Mortar,” Energy and Buildings, Vol. 35, No. 2, pp. 189~192, 2003.
    25.Zhang, Y. S., W. Sun and S. Liu, “Study on the Hydration Heat of Binder Paste in High-Performance Concrete,” Cement and Concrete Research, Vol. 32, No. 9, pp. 1483-1488, September 2002.
    26.Chatterji., A. D., N. T. Jensen and P. Christensen, “Studies of Alkali-Silica Reaction Part 3 Mechanisms By which NaCl and Ca(OH)2 Affect the Reaction,” Cement and Concrete Research, Vol. 16, pp. 246~154, 1986.
    27.蔡得時,「土木材料」,矩陣出版股份有限公司,民國88年8月。
    28.黃兆龍等,「公共工程混凝土使用飛灰要點」,行政院公共工程委員會專案研究計畫,民國87年。
    29.盧象石,孫長漢,邱遠陽,「火力發電廠手冊」,Ch2,中國工程師學會出版。
    30.Flagan, R. C., “Ash Particle Formation in Pulverized Coal Combustion,” Spring Meeting of the Western States Section, Seattle, Washington, The Combustion Institute, 1997.
    31.ACI Committee 211 1-81 “Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete,” ACI Manual of Concrete Practice No. 211, pp. 1-81, 1984.
    32.Yuan, R. L., and J. E. Cook, “Study of a Class C Fly Ash Concrete” in Proceedings, 1st International Conference on the Use of Fly Ash, Silica Fume, Slag, and Other Mineral By-products in Concrete, Montebello, PQ, July 31-Aug. 5, Edited by V.M. Malhotra. American Concrete Institute, Detroit, MI, Special Publication SP-79, pp. 307-319, 1983.
    33.Lane, R. O., and J. F. Best, “Properties and Use of Fly Ash in Portland Cement Concrete”, Concrete International, 4(7) pp. 81-92, 1982.
    34.Ghosh, R.S., and J. Timusk, “Creep of Fly Ash Concrete”, Journal of the American Concrete Institute, 78 pp. 351-357, 1981.
    35.朱煌林,「探討混凝土之耐火性評估」,臺灣省土木技師公會土木技師報NO.237,民國90年。
    36.Atis, C. D., “Heat Evolution of High-Volume Fly Ash Concrete,” Cement and Concrete Research, Vol. 32, No. 5, pp. 751-756, 2002.
    37.陳俊欽,「爐石取代部分水泥對流動性混凝土質流性質與工作性之影響」,碩士論文,國立中興大學,民國91年。(指導教授:顏聰博士)
    38.王和源等,「公共工程混凝土使用爐石水泥之可行性評估」, 期末報告NKIT-C-8805, 民國88年。
    39.沈得縣,「高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影響之研究」,博士論文,國立台灣科技大學,民國80年。(指導教授:黃兆龍博士)
    40.Peiwei, G., D. Min, F. Naiqian, “The Influence of Superplasticizer and Superfine Mineral Powder on the Flexibility, Strength and Durability of HPC”, Cement and Concrete Research, Vol. 31, No. 5, pp. 703-706, 2001.
    41.Aitchin, P. C., High Performance Concrete, E & FN SPON, 1998.
    42.ACI Committee 517, “Recommended Practice for Atmospheric Pressure Steam Curing of Concrete,” pp. 1-14.
    43.Kjellsen, K. O., R. J. Detwiler, and O. E. Gjorv, “Backscattered Electron Imaging of Cement Pastes Hydrated at Different Temperature,” Cement and Concrete Research, Vol. 20, No.2, pp. 308-311, 1990.
    44.Mamillan, M., “Expermental Research on the Acceleration of Concrete Hardening by Heat Treatment,” Ann. Inst. Tech. Batim. Travel. Publ., 23, No. 267/8, pp. 133-203, 1970.
    45.Hansson, I. L. H. and C. M. Hansson., “Electrical Resistivity Measurements of Portland cement Based Materials.”, Cement and Concrete Research, Vol. 13, pp. 675~683, 1983.
    46.蔡宜珍,「以氣體滲透法探討混凝土中添加卜作嵐材料之滲透性」,碩士論文,國立台灣科技大學,民國92年。(指導教授:張大鵬博士)
    47.Alsfamsi, A. M., and H. D. A. Imran, “Development of a Permeability Apparatus for Concrete and Mortar,” Cement and Concrete Research, Vol. 32, pp. 923-929, 2002.
    48.Verbeck, G. J. and R. H. Helmuth, “Structures and Physical Properties of Cement Past,” proceeding of the fifth international symposium on the chemistry, Tokyo, pp. 1-32, 1968.

    QR CODE