簡易檢索 / 詳目顯示

研究生: 阮氏雲
Thi-Van Nguyen
論文名稱: 使用深度學習技術對腕部靜脈和脈搏訊號進行人體識別和懷孕檢測的研究
A Study on Human Identification and Pregnancy Detection Using Deep Learning Techniques on Wrist Vein Images and Pulse Signals
指導教授: 洪西進
Shi-Jinn Horng
口試委員: 趙涵捷
楊竹星
楊昌彪
李正吉
葉佐任
范欽雄
戴文凱
吳怡樂
洪西進
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 65
中文關鍵詞: 深度學習輕量級模型腕部靜脈辨識注意力機制飽和度單導程ECG訊號性別分類
外文關鍵詞: deep learning, wrist vein recognition, saturation, lightweight model, attention, single-lead ECG signal, sex classification
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Acknowledgment I 摘要 II ABSTRACT IV Table of Contents VI List of Figures VIII List of Tables IX List of Abbreviations X List of Symbols XII Chapter 1 Introduction 1 1.1 Background of Deep Learning 1 1.2 Contributions of the Dissertation 2 1.3 Dissertation Organization 3 Chapter 2 Deep Learning for Wrist Vein Verification 4 2.1 Overview 4 2.2 Related Work 6 2.3 Methods 8 2.3.1 Wrist Vein under Saturation Channel 8 2.3.2 Wrist ROI Extraction 10 2.3.3 Wrist Vein Enhancement 13 2.3.4 Wrist Vein Extraction 14 2.4 Experimental Results and Discussion 22 2.4.1 Databases 22 2.4.2 Test on Human Identification 25 2.5 Summaries 37 Chapter 3 Deep Learning for Pregnancy Diagnosis and Sex Classification 38 3.1 Overview 38 3.2 Related Work 41 3.3 Methods 43 3.3.1 ECG Sampling 44 3.3.2 Filtering 45 3.3.3 Segmentation 46 3.3.4 Continuous Wavelet Transform 46 3.3.5 Classification with ResNet18 48 3.4 Experimental Results and Discussion 51 3.4.1 Databases 51 3.4.2 Experiment Settings 52 3.4.3 Test on Pregnancy Detection and Human Sex Classification 53 3.5 Summaries 56 Chapter 4 Conclusions and Future Work 57 4.1 Conclusions 57 4.2 Future Work 58

    [1] A. F. Abate, L. Cimmino, I. Cuomo, M. Di Nardo, and T. Murino, “On the impact of multimodal and multisensor biometrics in smart factories,” IEEE Trans. Ind. Informat., vol. 18, no. 12, pp. 9092–9100, Dec. 2022, doi: 10.1109/TII.2022.3178376.
    [2] S. J. Horng, D. T. Vu, T. V. Nguyen, W. Zhou and C. T. Lin, “Recognizing palm vein in smartphones using RGB Images,” in IEEE Transactions on Industrial Informatics, vol. 18, no. 9, pp. 5992-6002, Sept. 2022, doi: 10.1109/TII.2021.3134016.
    [3] J. Uriarte-Antonio, J. E. Suarez-Pascual, M. Garcia-Lorenz, and R. Sanchez-Reillo, “Parametrical study of a vascular biometric system,” in Proc. Int. Conf. Hand-Based Biometrics, Nov. 2011, pp. 1–6, doi: 10.1109/ICHB.2011.6094319.
    [4] J.-C. Lee, “A novel biometric system based on palm vein image,” Pattern Recognit. Lett., vol. 33, no. 12, pp. 1520–1528, Sep. 2012.
    [5] J. E. S. Pascual, J. Uriarte-Antonio, R. Sanchez-Reillo, and M. G. Lorenz, “Capturing hand or wrist vein images for biometric authentication using low-cost devices,” in Proc. 6th Int. Conf. Intell. Inf. Hiding Multimedia Signal Process, Oct. 2010, pp. 318–322, doi: 10.1109/IIHMSP.2010.85.
    [6] R. Raghavendra and C. Busch, “A low cost wrist vein sensor for biometric authentication,” in Proc. IEEE Int. Conf. Imag. Syst. Techn. (IST), Oct. 2016, pp. 201–205, doi: 10.1109/IST.2016. 7738223.
    [7] A. Das, U. Pal, M. A. Ferrer Ballester, and M. Blumenstein, “A new wrist vein biometric system,” in Proc. IEEE Symp. Comput. Intell. Biometrics Identity Manag. (CIBIM), Dec. 2014, pp. 68–75, doi: 10.1109/CIBIM.2014.7015445.
    [8] F. O. Babalola, O. Toygar, and Y. Bitirim, “Wrist vein recognition by fusion of multiple handcrafted methods,” in Proc. 3rd Int. Congr. Human-Comput. Interact., Optim. Robotic Appl. (HORA), Jun. 2021, pp. 1–5, doi: 10.1109/HORA52670.2021.9461367
    [9] R. Garcia-Martin and R. Sanchez-Reillo, “Wrist vascular biometric recognition using a portable contactless system,” Sensors, vol. 20, no. 5, p. 1469, Mar. 2020, doi: 10.3390/s20051469.
    [10] R. Garcia-Martin and R. Sanchez-Reillo, “Vein biometric recognition on a smartphone,” IEEE Access, vol. 8, pp. 104801–104813, 2020, doi: 10.1109/ACCESS.2020.3000044.
    [11] R. Garcia-Martin and R. Sanchez-Reillo, “Deep learning for vein biometric recognition on a smartphone,” IEEE Access, vol. 9, pp. 98812–98832, 2021, doi: 10.1109/ACCESS.2021.3095666.
    [12] O. C. Kurban, O. Niyaz, and T. Yildirim, “Neural network based wrist vein identification using ordinary camera,” in Proc. Int. Symp. Innov. Intell. Syst. Appl. (INISTA), Aug. 2016, pp. 1–4, doi: 10.1109/INISTA.2016.7571860.
    [13] R. Kabacinski and K. Kowalski, “Vein pattern database and benchmark results,” Electron. Lett., vol. 47, no. 20, pp. 1127–1128, 2011.
    [14] O. Toygar, F. O. Babalola, and Y. Bitirim, “FYO: A novel multimodal vein database with palmar, dorsal and wrist biometrics,” IEEE Access, vol. 8, pp. 82461–82470, 2020, doi: 10.1109/ACCESS.2020.2991475.
    [15] H. A. Nugroho et al., “Segmentation of plasmodium using saturation channel of HSV color space,” 2019 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2019, pp. 91-94, doi: 10.1109/ICOIACT46704.2019.8938471.
    [16] A. D. Mora, J. Soares and J. M. Fonseca, “A template matching technique for artifacts detection in retinal images,” 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 2013, pp. 717-722, doi: 10.1109/ISPA.2013.6703831.
    [17] G. K. O. Michael, T. Connie, and A. B. J. Teoh, “A contactless biometric system using palm print and palm vein features,” in Advanced Biometric Technologies, Rijeka, Croatia: InTech, 2011, pp. 155–177.
    [18] P. Babakhani and P. Zarei, “Automatic gamma correction based on average of brightness,” Advances in Computer Science: an International Journal, vol. 4, no. 6, pp. 156–159, 2015.
    [19] S. M. Pizer et al., “Adaptive histogram equalization and its variations,” Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355–368, Sep. 1987.
    [20] T. Xie, H. Yu, and B. Wilamowski, “Comparison between traditional neural networks and radial basis function networks,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 2011, pp. 1194–1199, doi: 10.1109/ISIE.2011.5984328.
    [21] J. Kannala and E. Rahtu, “BSIF: Binarized statistical image features,” in Proc. 21st Int. Conf. Pattern Recognit. (ICPR), Nov. 2012, pp. 1363–1366.
    [22] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” 2017, arXiv:1704.04861.
    [23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4510–4520.
    [24] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1314–1324.
    [25] S. Chen, Y. Liu, X. Gao, and Z. Han, “Mobilefacenets: Efficient CNNs for accurate real-time face verification on mobile devices,” in Proc. Chin. Conf. Biometric Recognit. Cham, Switzerland: Springer, 2018, pp. 428–438.
    [26] S. Cho, B.-S. Oh, K.-A. Toh, and Z. Lin, “Extraction and cross-matching of palm-vein and palmprint from the RGB and the NIR spectrums for identity verification,” IEEE Access, vol. 8, pp. 4005–4021, 2020, doi: 10.1109/ACCESS.2019.2963078.
    [27] F L. Wang, G. Leedham, and S.-Y. Cho, “Infrared imaging of hand vein patterns for biometric purposes,” IET Comput. Vis., vol. 1, pp. 113–122, Dec. 2007
    [28] J. Uriarte-Antonio, D. Hartung, J. E. S. Pascual, and R. Sanchez-Reillo, “Vascular biometrics based on a minutiae extraction approach,” in Proc. Carnahan Conf. Secur. Technol., Barcelona, Spain, Oct. 2011, pp. 1–7, doi: 10.1109/CCST.2011.6095927.
    [29] R. Garcia-Martin, R. Sanchez-Reillo, and J. E. Suarez-Pascual, “Wrist vascular biometric capture using a portable contactless system,” in Proc. Int. Carnahan Conf. Secur. Technol. (ICCST), Chennai, India, Oct. 2019, pp. 1–6, doi: 10.1109/CCST.2019.8888424.
    [30] P. Fernández Clotet and R. D. Findling, “Mobile wrist vein authentication using sift features,” in Proc. Int. Conf. Comput. Aided Syst. Theory. Cham, Switzerland: Springer, 2017, pp. 205–213.
    [31] D. Misra, “Mish: A self-regularized non-monotonic neural activation function,” in Proc. 31st Brit. Mach. Vis. Conf. (BMVC), 2020, pp. 1–14.
    [32] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient mobile network design,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Nashville, TN, USA, Jun. 2021, pp. 13708–13717, doi: 10.1109/CVPR46437.2021.01350.
    [33] FLANAGAN, Katie L., et al., “Sex and gender differences in the outcomes of vaccination over the life course,” Annual review of cell and developmental biology, 2017, 33: 577-599.
    [34] E. Makinen and R. Raisamo, “Evaluation of gender classification methods with automatically detected and aligned faces,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 541-547, March 2008, doi: 10.1109/TPAMI.2007.70800.
    [35] G. Levi and T. Hassner, “Age and gender classification using convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2015, pp. 34-42.
    [36] E. Tapia, C. A. Perez and K. W. Bowyer, “Gender classification from the same iris code used for recognition,” in IEEE Transactions on Information Forensics and Security, vol. 11, no. 8, pp. 1760-1770, Aug. 2016, doi: 10.1109/TIFS.2016.2550418
    [37] M. U. Khan, M. Saad, S. Aziz, J. Mumtaz Ch., S. Z. H. Naqvi and M. A. Qasim, “Electrocardiogram based gender classification,” 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 2020, pp. 1-6, doi: 10.1109/ICECCE49384.2020.9179305.
    [38] Goshvarpour, Ateke, and Atefeh Goshvarpour, “Gender and age classification using a new Poincare section-based feature set of ECG,” Signal, Image and Video Processing, 2019, vol. 13, pp. 531-539.
    [39] He, Kaiming, et al., “Deep residual learning for image recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.
    [40] Z. I. Attia et al., “Age and sex estimation using artificial intelligence from standard 12-lead ECGs,” Circulation: Arrhythmia and Electrophysiology, 2019, vol. 12, no. 9, e007284.
    [41] N. Strodthoff, P. Wagner, T. Schaeffter and W. Samek, “Deep learning for ECG analysis: Benchmarks and insights from PTB-XL,” in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1519-1528, May 2021, doi: 10.1109/JBHI.2020.3022989.
    [42] Cabra Lopez, Jose-Luis, et al., “Sex recognition through ECG signals aiming toward smartphone authentication,” Applied Sciences, 2022, vol. 12, no.13, pp. 6573.
    [43] Cabra Lopez, J. L., Parra, C., & Forero, G. (2023), “A fast deep learning ECG sex identifier based on wavelet RGB image classification,” Data, 2023, vol. 8, no. 6, pp. 97.
    [44] L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG analysis: a new approach in human identification,” IEEE Transactions on Instrumentation and Measurement, 2001, vol. 50, no. 3, pp. 808-812.
    [45] J.-L. Cabra, D. Mendez, and L. C. Trujillo, “Wide machine learning algorithms evaluation applied to ECG authentication and gender recognition,” in Proceedings of the 2018 2nd International Conference on Biometric Engineering and Applications, 2018, pp. 58-64.
    [46] Habib, Ahsan, Chandan Karmakar, and John Yearwood, “Choosing a sampling frequency for ECG QRS detection using convolutional networks,” arXiv preprint arXiv:2007.02052, 2020.
    [47] Sabut, Sukanta, et al., “Detection of ventricular arrhythmia using hybrid time-frequency-based features and deep neural network,” Physical and Engineering Sciences in Medicine, 2021, vol. 44, no. 1, pp. 135-145
    [48] Y. Li, Y. Pang, K. Wang, and X. Li, “Toward improving ECG biometric identification using cascaded convolutional neural networks,” Neurocomputing, vol. 391, pp. 83-95, May 2020.
    [49] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
    [50] Geurts, P., Ernst, D. & Wehenkel, L., “Extremely randomized trees,” Machine Learning, vol. 63, pp. 3-42, 2006, doi: 10.1007/s10994-006-6226-1.
    [51] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, 1986, doi: 10.1007/BF00116251.
    [52] E. Wilson and D. W. Tufts, “Multilayer perceptron design algorithm,” Proceedings of IEEE Workshop on Neural Networks for Signal Processing, Ermioni, Greece, 1994, pp. 61-68, doi: 10.1109/NNSP.1994.366063.
    [53] T. V. Nguyen, S. J. Horng, D. T. Vu, H. Chen and T. Li, “LAWNet: A lightweight attention-based deep learning model for wrist vein verification in smartphones using RGB images,” in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-10, Oct. 2023, doi: 10.1109/tim.2023.3328702.
    [54] S. Usharani, et al., “Pregnancy women—Smart care intelligent systems: Patient condition screening, visualization and monitoring with multimedia technology,” Intelligent Interactive Multimedia Systems for e-Healthcare Applications, 2022, pp. 147-169.
    [55] R. D. Wilson, et al., “Spontaneous abortion and pregnancy outcome after normal first-trimester ultrasound examination,” Obstetrics & Gynecology, 1986, vol. 67, no. 3, pp. 352-355.
    [56] J. G. Grudzinskas, et al., “Specific and sensitive determination of pregnancy-specific β1-glycoprotein by radioimmunoassay: A new pregnancy test,” The Lancet, 1977, vol. 309, no. 8007, pp. 333-335.
    [57] X. Lu, et al., “Pulse waveform analysis for pregnancy diagnosis based on machine learning,” 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2018, pp. 1075-1079, doi: 10.1109/IAEAC.2018.8577535.
    [58] Salah, AL-Hagree, et al., “Decision tree based smart system for pregnant women diagnosis,” 2022 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE), IEEE, 2022, pp. 1-6.
    [59] N. Li, et al., “Pulse wave recognition of pregnancy at three stages based on 1D CNN and GRU,” International Conference on Bio-Inspired Computing: Theories and Applications, Singapore: Springer Singapore, 2021, pp. 303-316.
    [60] J. Chen, J., H. Huang, H., W. Hao, et al., “A machine learning method correlating pulse pressure wave data with pregnancy,” International journal for numerical methods in biomedical engineering, 2020, vol. 36, no. 1, e3272.
    [61] P. P. Lakra, et al., “Deep-learning based identification of frames containing foetal gender region during early second trimester ultrasound scanning,” 2019 IEEE International Ultrasonics Symposium (IUS), IEEE, 2019, pp. 471-474.
    [62] Shi-Jinn Horng, Minh-Tuong Le, Dinh-Trung Vu, and Thi-Van Nguyen, “Shadow detection and removal from hand images using synthetic dataset,” 16th International Conference on Pattern Recognition and Information Processing, Belarus, pp. 29-34, 17-19 October 2023.
    [63] Vu, Dinh-Trung, Thi-Van Nguyen, and Shi-Jinn Horng, “Rotation-invariant palm ROI extraction for contactless recognition,” Advances in Computer Vision and Computational Biology: Proceedings from IPCV'20, HIMS'20, BIOCOMP'20, and BIOENG'20. Cham: Springer International Publishing, 2021. 701-715.
    [64] Arts, L.P.A., van den Broek, E.L. The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time–frequency analysis. Nat Comput Sci 2, 47–58 (2022). https://doi.org/10.1038/s43588-021-00183-z
    [65] X. Zhang, et al., “Adacos: Adaptively scaling cosine logits for effectively learning deep face representations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10823-10832.
    [66] Yong-Yi Fanjiang, Cheng-Chi Lee, Yan-Ta Du, and Shi-Jinn Horng, “Palm Vein Recognition Based on Convolutional Neural Network,” Informatica, 2021, vol. 32, no. 4, pp. 687-708.

    無法下載圖示 全文公開日期 2029/01/22 (校內網路)
    全文公開日期 2034/01/22 (校外網路)
    全文公開日期 2034/01/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE