簡易檢索 / 詳目顯示

研究生: 蘇韋
Wei Su
論文名稱: 使用雙主動層改善有機光感測 薄膜電晶體其響應度之研究
Investigation on the structure of double active-layer for Responsivity improvement of Organic Phototransistors
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
顏文正
Wen-zheng Yan
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 103
中文關鍵詞: 有機薄膜電晶體有機光感測薄膜電晶體
外文關鍵詞: Organic Thin-Film Transistor, Organic Phototransistor
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將以Pentacene及Tetracene作為主動層材料,並分為兩部分來作探討,第一部分為製作成有機薄膜電晶體,元件的第一層主動層為Pentacene(70 nm),第二層為Tetracene(50 nm),經由實驗結果得知此雙層主動層結構相較於單層主動層結構之元件有著更佳的電特性,並藉由負閘極偏壓測試及水氧可靠度測試得知此雙層結構元件有更佳的穩定度,另外可由AFM材料分析得知不同元件的材料晶相差異,此較佳的電特性將利用能帶圖加以解釋。
第二部分為製作成有機光感測薄膜電晶體,結構與第一部分相同,在此部分Pentacene是作為通道層,Tetracene是作為吸光層,元件製作完後分別照紅、綠、藍三種相同功率不同波長的光,量測照光後變化的電特性,並計算出分別之光響應度,經由實驗結果得知雙層結構相較於單層結構之響應度有顯著的提升,然後固定通道層厚度(70 nm),調變吸光層厚度(0、10、30、50、70 nm)至元件電特性及響應度達最佳值,並利用UV-Visible 光譜儀量測薄膜之光吸收度,驗證此雙層結構在可見光波段的吸收度確實明顯的提升,最後再以AFM量測不同吸光層厚度其晶相的差異,加以說明此雙層結構不僅提升電特性,也能顯著提升響應度。


In this study, Pentacene and Tetracene will be used as active layer materials and will be divided into two devices. The first device is to make organic thin film transistor (OTFT). The first active layer of the OTFT is Pentacene, and the second layer is Tetracene, the experimental results show that the two-layer active layer structure has better electrical characteristics than the single-layer active layer structure, and is known by negative gate bias test and water oxygen reliability test. The two-layer structural device has better stability, and the difference in crystalline structure of the material of the different device can be obtained by AFM analysis. The better electrical characteristics will be explained by the energy band diagram.
The second part is to make an organic phototransistor (OPT). The structure is the same as that of the first part. In this part, Pentacene is used as the channel layer, and Tetracene is used as the light absorbing layer. After the devices are fabricated, the red, green, and blue lights of the same power and different wavelengths are respectively measured. Through the experimental results, it is found that the responsivity of the two-layer structure is significantly improved compared with the single-layer structure, and then the thickness of the channel layer is fixed ( 70 nm), modulating the thickness of the light absorbing layer (0, 10, 30, 50, 70 nm) to the best electrical characteristics and responsivity of the device, and measuring the light absorbance of the film by UV-Visible spectrometer, verifying the absorption of the double structure in the visible light band is obviously improved. Finally, the difference in the crystalline structure of the thickness of the different light absorbing layers is measured by AFM. It is shown that the double layer structure not only improves the electrical characteristics, but also significantly improves the responsivity.

論文摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 概論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 有機薄膜電晶體介紹 4 2.1 有機半導體介紹 4 2.1.1 有機半導體材料介紹 5 2.1.2 有機半導體Pentacene之特性介紹 8 2.2 有機半導體之傳輸機制 9 2.2.1 載子跳躍模型機制(Hopping Model)[47-48] 10 2.2.2 陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 11 2.2.3 偏極子模型機制 (The Polaron Model) [51] 12 2.3 有機薄膜電晶體結構 13 2.4 有機薄膜電晶體之操作模式 16 2.5 電性參數萃取方式 19 2.5.1 載子移動率(Mobility, μ) 19 2.5.2 臨界電壓(Threshold Voltage, Vth) 21 2.5.3 次臨界斜率(Subthreshold Swing, S.S.) 22 2.5.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 22 2.6 有機光感測薄膜電晶體 23 2.7 光電流產生機制 24 2.8 有機光感測薄膜電晶體評價參數 26 第三章 雙層主動層有機光感測薄膜電晶體之製程 27 3.1 基板(Substrate)&閘極(Gate) 27 3.2 閘極絕緣層( Gate insulator layer) 28 3.3 主動層 29 3.4 源極/汲極 31 3.5 製程機台及分析設備介紹 33 3.5.1 製程機台 33 3.5.2 半導體參數分析儀(Semiconductor Parameter Analyze) 35 3.5.3 原子力顯微鏡(ATOMIC FORCE MICROSCOPE,AFM) 36 3.5.4 紫外光-可見光光譜儀(Ultraviolet/Visible Spectrophotometer, UV-VIS) 37 3.5.5 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 38 第四章 雙主動層結構有機薄膜電晶體實驗結果 39 4.1 使用雙主動層結構元件電特性 39 4.2 雙主動層結構元件可靠度測試 44 4.3 雙主動層結構元件能帶圖 49 4.4 雙主動層結構表面分析 52 第五章 雙主動層結構有機光感測薄膜電晶體實驗結果 56 5.1 使用雙主動層結構元件光電特性 56 5.2 吸光層厚度最佳化 64 5.3 紫外光-可見光吸收光譜 75 5.4 不同吸光層厚度表面分析 78 第六章 結論與未來展望 84 6.1 結論 84 6.2 未來展望 85 參考文獻 86

[1] Qiang Ren, Qingsheng Xu, Hongquan Xia, Xiao Luo, Feiyu Zhao, Lei Sun, Yao Li, “High performance photoresponsive field-effect transistorson MoS2/Pentacene heterojunction” Organic Electronics51, p142-148,(2017).
[2] Wenli Lv , Lili Du , Yingquan Peng , Zhong ZhaoY. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics,” Applied Physics Letters, Vol, 81, p.562 (2002).
[3] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner,”Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors,” Applied Physics Letters, Vol. 87, p.113501 (2005).
[4] H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T.S. Kim, J. Hahn, S. Lee , Y. Yi, M. H. Cho, “Improvement of The Contact Resistance Between ITO and Pentacene Using Various Metal-Oxide Interlayers,” Organic Electronics, Vol. 9, pp. 1140–1145 (2008).
[5] M. W. Shin, S. H. Jang, “Thermal Analysis of Active Layer in Organic Thin-Flm Transistors,” Organic Electronics, Vol. 13, pp.767–770 (2012).
[6] Shuo-Huang Yuan, (2016). Effect of Metallic Nanoparticles on the Photodetection Behavior of an Organic Phototransistor, National Central University
[7] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene–quantum dot phototransistors with ultrahigh gain,” Nature Nanotechnol, vol. 7, pp. 363–368, May 2012.
[8] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett, vol. 84, p. 4721, May 2000.
[9] R. Zakaria, W. K. Lin, and C. C. Lim, “Plasmonic enhancement of gold nanoparticles in poly(3-hexylthiophene) organic phototransistor,” Appl. Phys. Exp, vol. 5, p. 082002, Jul. 2012.
[10] Bang Joo Song, Kihyon Hong, Woong-Kwon Kim, Kisoo Kim, Sungjun Kim, and
Jong-Lam Lee “Effect of Oxygen Plasma Treatment on Crystal Growth Mode at Pentacene/Ni Interface in Organic Thin-Film Transistors” J. Phys. Chem. B,114, 14854–14859,2010.
[11] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou,”Buffer-Layer-Induced Barrier Reduction: Role of Tunneling in Organic Light-Emitting Devices,” Applied Physics Letters, Vol. 84, p.425 (2004).
[12] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, “Enhancement of Electron Injection in Organic Light-Emitting Devices Using an Ag/Lif Cathode,” Journal of Applied Physics, Vol. 95, p.3828 (2004).
[13] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman”, Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”, Proceeding Of The IEEE, Vol. 93, p. 1330 (2005).
[14] A.Pierre,A.Gaikwad,and A.C.Arias, Nature Photonics, vol. 11, p. 193, 2017
[15] https://36kr.com(36kr, 2017/08/07)
[16] T. Ahn, H. Jung, H. J. Suk, M. H. Yi, “Effect of postfabrication thermal annealing on the electrical performance of Pentacene organic thin-film transistors,” Synthetic Metals, Vol. 159, pp. 1277-1280, (2009).
[17] A.Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp, 1210, (1986).
[18] A. Assadi, C. Svensson, M. Willander, O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53. pp. 195, (1988).
[19] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
[20] Z. Bao, A. Dodabalapur, A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, pp. 4108, (1996).
[21] H. Sirringhaus, N. Tessler, R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744, (1998).
[22] F.Ebisawa,T.Kurokawa,S.Nara,“Electrical properties ofpolyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, pp. 3255 , (1983).
[23] J. H. Burroughes, C. A. Jones, R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, pp. 137-141, (1988).
[24] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372, (1993).
[25] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” Journal of the American Chemical Society, Vol. 115, pp. 8716, (1993).
[26] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chemistry of Materials, Vol. 6, pp. 1809, (1994).
[27] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol. 268, pp. 270-271, (1995).
[28] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, “Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators,” Synthetic Metals, Vol. 92, pp. 47, (1998).
[29] H. E. Katz, L. Torsi, A. Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers,” Chemistry of Materials, Vol. 7, pp. 2235-2237, (1995).
[30] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, “Organic transistors using-octithiophene and, -dihexyl-octithiophene: Influence of oligomer length versus molecular ordering on mobility,” Advanced Material, Vol. 9, pp. 557-561, (1997).
[31] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Advanced Material, Vol. 9, pp. 389-391, (1997).
[32] J. H. Schön, Ch. Kloc, B. Batlogg, “On the intrinsic limits of Pentacene field-effect transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).
[33] Y. -Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, “Stacked Pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606, (1997).
[34] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, “Molecular beam deposited thin films of Pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, pp. 2501, (1996).
[35] Y. Y. Lin, D. J. Gundlach, T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, pp. 80, (1996).
[36] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, pp. 419-424, (1992).
[37] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, “C60 thin film transistors,” Applied Physics Letter, Vol. 67, pp. 121, (1995).
[38] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512–515, (1993).
[39] A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, pp. 257, (1994)
[40] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332, (1996).
[41] G. Guillaud, M. Al Sadound, M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503, (1990).
[42] Z. Bao, A. J. Lovinger, J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207, (1998).
[43] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letter, Vol. 63, pp. 1372, (1993).
[44] Ke Zhou , Huanli Dong , Hao-li Zhang and Wenping Hu “High performance n-type and ambipolar small organic semiconductors for organic thin film transistors,” Phys. Chem. Chem. Phys , Vol. 16, pp. 22448 -22457, (2014).
[45] J. M . Shaw, and P. F. Seidler, “Organic Electronic: Introduction,”IBM Journal of Research and Development, Vol.45,No.1, pp.3-9(2001).
[46] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol. 10, pp. 234-238 (1998).
[47] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon, “ Physical Review Letters, Vol. 103, pp. 51-61 (1956).
[48] N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors, “Canadian Journal of Physics. Vol. 34, p. 1356 (1956).
[49] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors, “ Masters Thesis, University of Cagliari, (2009).
[50] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films, “ Physical Review Letters, Vol. 25, p. 509 (1970).
[51] C.W.Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Thesis, National Cheng Kung University, Tainan, Taiwan (2006).
[52] Richard D. Yang, T. Gredig, Corneliu N. Colesniuc, Jeongwon Park, Ivan K. Schuller, William C. Trogler, and Andrew C. Kummel, “Ultrathin organic transistors for chemical sensing”, Appl. Phys. Lett., vol. 90, pp. 263506, 2007.
[53] S. C. Chen, K.H. Wu, J.-X. Li, A. Yabushita, S.H. Tang, C. W. Luo, J.Y. Juang, H.C.Kuo, Y.L. Chueh, “n-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy”, Sci Rep, vol. 5, pp. 18354, 2015. 86
[54] Chen Dongxian, Metal Oxides as the Buffer Layers for Organic Thin-Film Transistors, Submitted to Institute of Display College of Electrical and Computer Engineering Nation Chiao Tung University, 2005
[55] Lin Jingzhe, Zinc oxide nanoparticle thin films by thermal evaporation and their optical properties, National Taiwan University of Science and Technology, 2016
[56] Rowan W. MacQueen,a Martin Liebhaber,a Jens Niederhausen,a Mathias Mews,b Clemens Gersmann,a Sara Jackle,cd Klaus Jager,e Murad J. Y. Tayebjee, fg Timothy W. Schmidt, h Bernd Rechb and Klaus Lips, “Crystalline silicon solar cells with Tetracene interlayers: the path to silicon-singlet fission heterojunction devices”, Materials Horizons Vol 5(6), p. 1065-1075,2018
[57] Jeong-M. Choi,JiyoulLee,D. K. Hwang, Jae Hoon Kim, Seongil Im, and Eugene Kim, Appl. Phys. Lett. Vol 88,p. 043508 ,2006
[58] Fahrettin Yakuphanoglu, W. Aslam Farooq, Synthetic Metals, 161 51–55, 2011
[59] R Ye, M. Baba, K. Suzuki, Y. Ohishi, K. Mori, “Effects of O2 and H2O in electrical characteristics of Pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, pp. 437-440, (2004).
[60] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letter, Vol. 92, pp. 093309, (2008).
[61] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, pp. 271-275, (2006).
[62] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letter, Vol. 80, pp. 151, (2002).
[63] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, No. 6, (2001).
[64] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, No. 2, (2004).
[65] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-eddect transistor made from solution-procceed organic semiconductors”, Synthetic Metals, Vol. 88, pp. 37-55, (1997).
[66] David J. Griffiths, Introduction to Electrodynamics,USA(1999)
[67] X. Liu, M. Zhang, G. Dong, X. Zhang, Y. Wang, L. Duan, L. Wang, and Y. Qiu, “Solution-processed PCDTBT capped low-voltage InGaZnOx thin film phototransistors for visible-light detection”, Organic Electronics, vol. 15, p. 1664, pp. 1664-1671, 2014.
[68] Z. Pei, H. Lai, J. Wang, W. Chiang, and C. Chen, “High-Responsivity and High-Sensitivity Graphene Dots/a-IGZO Thin-Film Phototransistor”, IEEE Electron Device Lett, vol. 36, no. 1, p. 44, 2015.
[69] H. Wang, Y. Xiao, Z. Chen, W. Xu, M. Long, and J. Xu, “Solution-processed PCDTBT capped low-voltage InGaZnOx thin film phototransistors for visible-light detection”, Appl. Phys. Lett., vol. 106, p. 242102, 2015.
[70] J. Yang, H. Kwak, Y. Lee, Y. Kang, M. Cho, J. H. Cho, Y. Kim, S. Jeong, S. Park, H. Lee, and H. Kim, “Electrocatalytic Activity of Molybdenum Disulfide Nanosheets Enhanced by Self-Doped Polyaniline for Highly Sensitive and Synergistic Determination of Adenine and Guanine”, ACS Appl. Mater. Interfaces, vol. 8, p. 8576, 2016.
[71] I. Karteri, S. Karatas, and F. Yakuphanoglu, “Photosensing properties of Pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators”, J. Mater. Sci.: Mater. Electron, vol. 27, pp. 5284-5293, 2016.
[72] Bo Yao, Yan Li, Zebo Fang,⁎, Yongsheng Tan, Shiyan Liu, Yingquan Peng, Haitao Xu, “Investigation of the source-drain electrodes/the active layer contact-effect on the performance of organic phototransistor”, Synth. Met.vol 233,p.58-62,2017
[73] Qiang Ren,Qingsheng Xu,Hongquan Xia,Xiao Luo,Feiyu Zhao,Lei Sun,Yao Li,Wenli Lv,Lili Du,Yingquan Peng,Zhong Zhao, “High performance photoresponsive field-effect transistors based onMoS2/pentacene heterojunction”, Organic Electronics, vol.51,p.142-148,2017.
[74] Junsu Park, Jung-Hun Seo, Seung-Won Yeom, Chunhua Yao, Vina W. Yang, Zhiyong Cai, Young Min Jhon and Byeong-Kwon Ju, “Flexible and Transparent Organic Phototransistors on Biodegradable Cellulose Nanofibrillated Fiber Substrates”, Adv. Optical Mater. 2018, 1701140
[75] Youngjun Kim, Mincheol Chang, Byoungnam Park. “Near infrared-induced optical gating at the lead-sulfide (PbS)/Pentacene interface”, Thin Solid Films 651, 85–90, 2018

無法下載圖示 全文公開日期 2024/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE