簡易檢索 / 詳目顯示

研究生: Misganaw Adigo Weret
Misganaw Adigo Weret
論文名稱: 鋰-硫電池含硫聚合物正極材料的反應機理與制備
Deciphering the Reaction Mechanism and Fabrication of Sulfur-Containing Polymer Cathode Materials for Lithium-Sulfur Batteries
指導教授: 郭中豐
Chung-Feng Kuo
黃炳照
Bing-Joe Hwang
口試委員: 黃昌群
Chang-Chiun Huang
蘇威年
Wei-Nien Su
Nae-Lih Wu
Nae-Lih Wu
Heng-Liang Wu
Heng-Liang Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 178
中文關鍵詞: 靜電紡絲逆聚合鋰硫電池有機硫化合物聚丙烯腈硫化聚丙烯腈
外文關鍵詞: Electrospinning, Inverse polymerization, Lithium-Sulfur batteries, Organosulfur compounds, Poly(acrylonitrile), Sulfurized-poly(acrylonitrile)
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可持續、低成本、高能量密度和更長壽命電池的需求不斷增加,引起了廣泛的研究。由於鋰硫電池(Li-S)具有2566 Wh kg的高能量密度、低成本、天然資源豐富、對環境無害和高理論容量(1672 mAh g)而備受關注。 儘管在過去幾十年中已有許多研究成果,但是一些既有的挑戰阻礙了Li-S電池的實際應用。為解決Li-S電池的問題,本文進行了深入的研究。
    本研究以硫化聚丙烯腈聚合物(Sulfurized-poly(acrylonitrile, SPAN)為陰極,其特徵為主體聚合物及以共價鍵結的短多硫化物(S2-4)鏈,用以解決多硫化物的溶解和穿梭作用,提供有效的電化學性能;然而,鋰合成和儲存機制尚未清楚地理解。SPAN化合物中硫含量尚低(大多數低於50 wt%),在高速率下的倍率能力差。在本論文的第一項主題為陰極的SPAN合成和鋰的儲存機制。第二和第三項主題為Li-S電池設計並合成了纖維狀結構的陰極材料,以增加複合材料的硫含量並增強陰極的反應動力。
    本文使用高分辨率交叉極化/魔角旋轉(CP-MAS)固態核磁共振(ssNMR)、傅立葉轉換紅外光譜(FTIR),研究了SPAN的合成反應、化學結構和鋰存儲機制、X射線光電子能譜(XPS)、元素分析(EA)技術和電化學分析。研究發現該化合物結構除了S-S和C-S鍵外還包含N-S和N=C-S。共價鍵的電化學斷裂導致在第一次循環中具有高的初始電容量和高的極化電壓。共價鍵在第一個循環中斷裂後,Li-C和Li-N鍵的給電子作用增加了共軛環結構的電子密度,並有利於減少第二次循環後的充電/放電電壓滯後,提供了高可逆的比容量、高庫侖效率亦延長了循環壽命,並且在第二次循環後具有低電壓滯後。顯示SPAN陰極的共價分子相互作用克服了多硫化物的溶解,防止活性物質的損失。此外,該結構還可用於設計有機陰極,提高電化學性能的同時伴隨著高活性物質負載。在循環陰極上進行研究,包括異位拉曼光譜和異位CP-MAS、ssNMR,以研究陰極的鋰儲存機制。
    在第二項主題中,使用溶液電紡絲方法合成了相互連接的纖維狀陰極,然後在氬氣中進行熱處理,電紡互連纖維與熔融硫(以下稱為S@SP@SPAN)聚合,進行原位逆硫化。S@SP@SPAN的導電碳和相互連接的纖維形態的結合改善了陰極材料的電導率。因此,製備的纖維狀S@SP@SPAN陰極在第一、第二和第五十次循環中以0.1 C的速率提供了1914、1504、1460 mAh g-1的高比放電容量。此外,該陰極顯示出高的比放電容量。在第六次循環中的放電容量為1328 mAh g-1,在0.5 C的250次循環後仍保持1061 mAh g-1。更重要的是,在第六次循環中,陰極提供了1206 mAh g-1的高放電容量,並在2 C下200次循環後保留831 mAh g-1,庫侖效率幾乎為100%。
    最後通過溶液靜電紡絲技術將具有三個硫醇基的三硫氰尿酸(TTCA)與聚丙烯腈(PAN)混合,以合成纖維狀TTCA/PAN,目的是增加共價鍵合的活性物質。靜電紡成的TTCA/PAN纖維通過逆硫化與硫聚合。因此,TTCA的引入使得纖維狀STTCA@SPAN陰極中的硫含量增加到58 wt%。牢固地化學鍵合的短鏈硫使STTCA@SPAN陰極與低成本的碳酸鹽基電解質顯現優異的相容性;且纖維陰極的初始放電容量為1301 mAh g-1,在0.1 C的速率下在400次循環中表現出優異的循環穩定性。當在碳酸鹽電解質中的濃度為0.2、0.5、1、2 C時,放電容量為1028、957、827和660 mAh g-1下具有較高的速率容量。在連續的充/放電過程之後,交聯的纖維形態仍保持陰極的結構穩定性。


    The increasing demands for sustainable, low cost, high energy density, and longer lifespan batteries have drawn significant research attention. In this regard, lithium-sulfur batteries (LiS) have attracted great attention owing to their high energy density of 2566 Wh kg and by utilizing the low cost, natural abundance, environmental benignity, and high theoretical capacity (1672 mAh g) sulfur cathodes. Although numerous research efforts have been accomplished in the past decades, several intrinsic challenges have continued to hinder the real application of LiS batteries. Intense research efforts have been made to decipher the intrinsic problems of LiS batteries. Sulfurized-poly(acrylonitrile) (SPAN) based cathode materials have been studied since 2000.
    SPAN polymer composites consisting of covalently bonded short polysulfide (S2-4) chains with the host polymer cathodes can decipher the polysulfide dissolution and shuttling effect and deliver promising electrochemical performance. However, the synthesis and lithium storage mechanisms are yet not being clearly understood. SPAN compounds also show low sulfur content in the composite (mostly below 50 wt%) and moderate conductivity leading to poor rate capability at a high C-rate. In the first work of this dissertation, the SPAN synthesis and lithium storage mechanisms of the cathodes are investigated. In the second and third work, fibrous structured cathode materials are designed and synthesized to increase the sulfur content of the composite and enhance the reaction kinetics for LiS batteries.
    A plausible synthesis reaction, chemical structure, and lithium storage mechanism for SPAN are investigated using high-resolution cross-polarization/magic angle spinning (CPMAS) solid states nuclear magnetic resonance (ssNMR), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA) techniques, and electrochemical analysis. The analysis revealed that the compound structure contained NS and NCS in addition to SS and CS bonds. Post-mortem studies including ex-situ Raman and ex-situ CPMAS ssNMR were performed on the cycled cathodes to investigate the lithium storage mechanism of the cathode. The post-mortem results revealed that electrochemical cleavage of the covalent bonds resulted in high initial discharge capacity with high voltage polarization in the first cycle. Once the covalent bonds are cleaved in the first cycle, the electron donating effect of the LiC and LiN bonds increased the electron density of the conjugated heterocyclic structure and benefitted the decrease of the charge/discharge voltage hysteresis after the second cycle. As a result, it provided high reversible specific capacity, high Coulombic efficiency, and an extended cycle life with low voltage hysteresis after the second cycle. The results showed that the covalent molecular interactions of the SPAN cathode completely overcame the polysulfide dissolution, thereby preventing the loss of active materials.
    In the second work, interconnected fibrous cathodes were synthesized using a solution electrospinning method followed by thermal treatment in an argon atmosphere. The electrospun interconnected fibers were polymerized with molten sulfur (hereafter labeled as S@SP@SPAN) through insitu inverse vulcanization by the thermal treatment in an argon atmosphere. The incorporation of conductive carbon and the interconnected fibrous morphologies of the S@SP@SPAN improved the conductivity of the cathode materials. Consequently, the prepared fibrous S@SP@SPAN cathode delivered high specific discharge capacities of 1914, 1504, and 1460 mAh g-1 in the first, second, and fiftieth cycle at a rate of 0.1 C. Moreover, the cathode revealed a high discharge capacity of 1328 mAh g-1 in the sixth cycle and maintained 1061 mAh g-1 after 250 cycles at 0.5 C. More significantly, the cathode delivered a high discharge capacity of 1206 mAh g-1 in the sixth cycle and retained 831 mAh g-1 after 200 cycles at 2 C with almost 100% Coulombic efficiency.
    In the final work, trithiocyanuric acid (TTCA) with three thiol groups was mixed with PAN to synthesized fibrous TTCAPAN through a solution electrospinning technique so as to increase the contents of the covalently bonded active materials. The as-electrospun TTCAPAN fiber polymerized with sulfur through inverse vulcanization. Thus, the introduction of TTCA allowed to increase the sulfur content to 58 wt% in the fibrous STTCA@SPAN cathode. The strong chemically bonded short-chain sulfur enables the STTCA@SPAN cathode to show excellent compatibility with a low-cost carbonate-based electrolyte. Moreover, the fibrous cathodes exhibited an initial discharge capacity of 1301 mAh g, excellent cycle stability over 400 cycles at a rate of 0.1 C, and high rate capabilities of 1028, 957, 827, and 660 mAh g at rates of 0.2, 0.5, 1, and 2 C respectively in the carbonate electrolyte. The cross-linked fibrous morphology maintained the structural stability of the cathode after a continuous charge/discharge process.
    Furthermore, the structural elucidation is found to be further applicable for designing organic cathode materials that could achieve high active material contents concomitantly with improving electrochemical performance.

    摘要…………………………………………………………………………………….i Abstract iv Acknowledgements vii Table of Contents ix List of Figures xiv List of Tables xix List of Schemes xx List of Units and Abbreviations xxi Chapter 1. General Background……………………………………………………..1 1.1. Introduction to energy sources………………………………………………......1 1.2. Renewable energy sources………………………………………………………2 1.3. Rechargeable batteries…………………………………………………………..2 Chapter 2. Lithium-Sulfur Battery..............................................................................5 2.1. Introduction to lithium-sulfur batteries………………………………………….5 2.2. Components of lithium-sulfur batteries………………………………………….6 2.3. Working principles of lithium-sulfur batteries………………………………......7 2.4. Important parameters in lithium-sulfur batteries………………………………..11 2.5. Challenges of lithium-sulfur batteries……………………………………….......12 2.5.1. The insulating nature of sulfur and its final discharge products…………….13 2.5.2. The large volumetric expansion of sulfur cathode upon lithiation………….14 2.5.3. Dissolution of higher-order lithium polysulfides…………………………...15 2.5.4. Uncontrolled reactivity of lithium metal anode…………………………….16 2.6. Sulfur cathode compositions……………………………………………………17 2.7. Sulfur cathode fabrication strategies………………………………………........18 2.7.1. Physical confinements……………………………………………………...18 2.7.1.1. Sulfur-carbonaceous materials………………………………………....19 2.7.1.2. Sulfur-graphene composite materials…………………………………..20 2.7.2. Chemical immobilization…………………………………………………...22 2.7.2.1. Sulfur-polyaniline composite…………………………………………..22 2.7.2.2. Sulfur-polypyrrole composite………………………………………….23 2.7.2.3. Sulfur-polythiophene composite……………………………………….23 2.7.2.4. Sulfurized-polyacrylonitrile composite………………………………...24 2.8. Motivation and Objectives of the study…………………………………………36 2.8.1. Motivations…………………………………………………………………36 2.8.2. Objectives of the thesis……………………………………………………..37 2.9. Organization of the works………………………………………………………37 Chapter 3. Experimental and Characterization Techniques……………................39 3.1. Experimental section………………………………………………………........39 3.1.1. Chemicals and reagents………………………………………………….....39 3.1.2. Materials synthesis methods………………………………………………..39 3.1.2.1. Synthesis of sulfurized-poly(acrylonitrile) compound………………...39 3.1.2.2. Synthesis of S@SP@SPAN fibers…………………………………….40 3.1.2.3. Synthesis of STTCA@SPAN fibers…………………………………...40 3.2. Morphologies and structure characterization techniques……………………….41 3.2.1. Scanning electron microscopy……………………………………………...41 3.2.2. Elemental analysis……………………………………………………….....42 3.2.3. Thermogravimetric analysis………………………………………………..42 3.2.4. X-ray powder diffraction…………………………………………………...43 3.2.5. Fourier-transform infrared spectroscopy…………………………………...43 3.2.6. Raman spectroscopy………………………………………………………..44 3.2.7. X-ray photoelectron spectroscopy………………………………………….44 3.2.8. Nuclear magnetic resonance spectroscopy…………………………………44 3.3. Cathode fabrication……………………………………………………………..46 3.4. Electrochemical performance measurements…………………………………...46 3.4.1. Cyclic voltammetry………………………………………………………....46 3.4.2. Galvanostatic cycling……………………………………………………….47 3.4.3. Electrochemical impedance spectroscopy…………………………………..48 3.5. Post-mortem analysis……………………………………………………………48 Chapter 4. Mechanistic Understanding for the Cyclization Reaction and Lithium Storage of Sulfurized-Poly(acrylonitrile) Cathode for Lithium-Sulfur Batteries 49 4.1. Introduction to the mechanistic investigation of SPAN …………………………49 4.2. Results and discussions…………………………………………………………..50 4.2.1. Morphology analysis………………………………………………………...51 4.2.2. Structural characterizations…………………………………………………..52 4.2.3. Electrochemical characterizations……………………………………………63 4.2.3.1. Cyclic voltammetry analysis 64 4.2.3.2. Galvanostatic cyclic analysis 64 4.2.3.3. Electrochemical impedance spectroscopy analysis 66 4.2.4. Electrochemical reaction mechanism……………………………………….68 4.3. Summary………………………………………………………………………...78 Chapter 5. Interconnected Fibrous S@SP@SPAN as Cathode for High-Performance Lithium-Sulfur Batteries 79 5.1. Introduction to SPAN cathode modification 79 5.2. Results and discussions 82 5.2.1. Morphology and structure characterizations………………………………...82 5.2.2. Electrochemical characterizations…………………………………………...88 5.2.2.1. Cyclic voltammetry analysis……………………………………………88 5.2.2.2. Galvanostatic cycling tests 90 5.2.2.3. Electrochemical impedance spectroscopy analysis 92 5.3. Summary 96 Chapter 6. Fibrous Organosulfur Compounds as Cathode Materials for High Performance Lithium-Sulfur Batteries 97 6.1. Introduction to organosulfur cathode materials 97 6.2. Results and discussions 100 6.2.1. Morphology analysis………………………………………………………...101 6.2.2. Structure characterizations………………………………………………….104 6.2.3. Electrochemical performance analysis……………………………………..108 6.2.4. Post-mortem analysis……………………………………………………….113 6.3. Summary 118 Chapter 7. Conclusions and Future Outlooks 119 7.1. Conclusions 119 7.2. Future outlooks 121 Appendices 123 A. Standard reduction potentials 123 B. Theoretical estimation of 13C Chem-NMR of cPAN and SPAN 123 C. Cyclic voltagram comparison of S@SP@SPAN with SPAN cathode and rate capability of SPAN cathode 125 References 126

    [1] A. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Rechargeable lithium-sulfur batteries, Chemical Reviews, 114 (2014) 11751-11787.
    [2] D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nature Chemistry, 7 (2014) 19.
    [3] M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chemical Reviews, 104 (2004) 4245-4270.
    [4] S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nature Materials, 16 (2016) 16-22.
    [5] J. Zhang, H. Huang, J. Bae, S. H. Chung, W. Zhang, A. Manthiram, G. Yu, Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: structure design and interfacial chemistry, Small Methods, 2 (2018) 1700279.
    [6] J. Zhang, Z. Xia, L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage, Science Advances, 1 (2015) e1500564.
    [7] V. V. Quaschning, Renewable energy and climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2019.
    [8] F. Barbir, Transition to renewable energy systems with hydrogen as an energy carrier, Energy, 34 (2009) 308-312.
    [9] H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Hierarchical 3D electrodes for electrochemical energy storage, Nature Reviews Materials, 4 (2019) 45-60.
    [10] X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nature Materials, 8 (2009) 500.
    [11] Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects, Advanced Functional Materials, 28 (2018) 1707536.
    [12] J.B. Goodenough, Electrochemical energy storage in a sustainable modern society, Energy & Environmental Science, 7 (2014) 14-18.
    [13] B.C. Melot, J.M. Tarascon, Design and preparation of materials for advanced electrochemical storage, Accounts of Chemical Research, 46 (2013) 1226-1238.
    [14] A. Schifrin, Non-rechargeable battery pack, United States patent 5,225,294, 1993.
    [15] J.S. Hodgman, F.H. Mullersman, Battery charging system including means for distinguishing between rechargeable and non-rechargeable batteries, United States patent 4,577,144, 1986.
    [16] A. Yoshino, K. Sanechika, T. Nakajima, Secondary battery, United States patent 4,668,595, 1987.
    [17] S. Kawakami, S. Mishina, N. Kobayashi, M. Asao, Rechargeable batteries, United States patent 6,596,432, 2003.
    [18] K.R. Bullock, Lead/acid batteries, Journal of Power Sources, 51 (1994) 1-17.
    [19] F. Putois, Market for nickel-cadmium batteries, Journal of Power Sources, 57 (1995) 67-70.
    [20] M.L. Soria, J. Chacón, J.C. Hernández, Metal hydride electrodes and Ni-MH batteries for automotive high power applications, Journal of Power Sources, 102 (2001) 97-104.
    [21] S.R. Ovshinsky, M.A. Fetcenko, J. Ross, A Nickel metal hydride battery forelectric vehicles, Science, 260 (1993) 176.
    [22] T. Sakai, I. Uehara, H. Ishikawa, R&D on metal hydride materials and Ni–MH batteries in Japan, Journal of Alloys and Compounds, 293-295 (1999) 762-769.
    [23] S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries, Journal of Power Sources, 51 (1994) 79-104.
    [24] M. Armand, J.M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657.
    [25] J. Wang, Y.-S. He, J. Yang, Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries, Advanced Materials, 27 (2015) 569-575.
    [26] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [27] A.E. Lyall, H.N. Seiger, Negative lithium electrode and electrochemical battery containing the same, United States patent 3,508,967, 1970.
    [28] K. Izumi, Rechargeable battery, United States patent 4,086,523, 1978.
    [29] M.S. Whittingham, Lithium batteries and cathode materials, Chemical Reviews, 104 (2004) 4271-4302.
    [30] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nature Materials, 11 (2012) 19-29.
    [31] S.-H. Chung, A. Manthiram, Current status and future prospects of metal-sulfur batteries, Advanced Materials, 31 (2019) 1901125.
    [32] E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries, Nat Nanotechnol, 13 (2018) 337-344.
    [33] M. Kolek, F. Otteny, P. Schmidt, C. Mück-Lichtenfeld, C. Einholz, J. Becking, E. Schleicher, M. Winter, P. Bieker, B. Esser, Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions, Energy & Environmental Science, 10 (2017) 2334-2341.
    [34] A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chemical Society Reviews, 47 (2018) 736-851.
    [35] M. Rana, S.A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle, R. Knibbe, Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading, Energy Storage Materials, 18 (2019) 289-310.
    [36] B. Meyer, Elemental sulfur, Chemical Reviews, 76 (1976) 367-388.
    [37] D. Herbert, J. Ulam, Electric dry cells and storage batteries., United States Patent 3,043,896, (1962).
    [38] R.M.L. Bhaskara, Organic electrolyte cells, United States Patent 3,413,154 1968.
    [39] D.A. Nole, V. Moss, Battery employing lithium-sulphur electrodes with non-aqueous electrolyte, United States patent 3,532,543, 1970.
    [40] H. Yamin, E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell, Journal of Power Sources, 9 (1983) 281-287.
    [41] E. Peled, A. Gorenshtein, M. Segal, Y. Sternberg, Rechargeable lithium-sulfur battery (extended abstract), Journal of Power Sources, 26 (1989) 269-271.
    [42] E. Peled, A. Gorenshtein, M. Segal, Y. Sternberg, Rechargeable lithium-sulfur battery (extended abstract), Journal of Power Sources, 26 (1989) 269-271.
    [43] E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, Lithium‐sulfur battery: evaluation of dioxolane‐based electrolytes, Journal of the Electrochemical Society, 136 (1989) 1621-1625.
    [44] D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns, Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes, Journal of Power Sources, 89 (2000) 219-226.
    [45] J. Shim, K.A. Striebel, E.J. Cairns, The Lithium/sulfur rechargeable cell: effects of electrode composition and solvent on cell performance, Journal of The Electrochemical Society, 149 (2002) A1321-A1325.
    [46] C.-H. Chang, A. Manthiram, Covalently grafted polysulfur–graphene nanocomposites for ultrahigh sulfur-loading lithium–polysulfur batteries, ACS Energy Letters, 3 (2018) 72-77.
    [47] X.-B. Cheng, J.-Q. Huang, Q. Zhang, H.-J. Peng, M.-Q. Zhao, F. Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries, Nano Energy, 4 (2014) 65-72.
    [48] H. Chu, H. Noh, Y.-J. Kim, S. Yuk, J.-H. Lee, J. Lee, H. Kwack, Y. Kim, D.-K. Yang, H.-T. Kim, Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions, Nature Communications, 10 (2019) 188.
    [49] S.-H. Chung, A. Manthiram, High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator, The Journal of Physical Chemistry Letters, 5 (2014) 1978-1983.
    [50] S.-H. Chung, R. Singhal, V. Kalra, A. Manthiram, Porous carbon mat as an electrochemical testing platform for investigating the polysulfide retention of various cathode configurations in Li–S cells, The Journal of Physical Chemistry Letters, 6 (2015) 2163-2169.
    [51] N. Deng, Y. Liu, Q. Li, J. Yan, W. Lei, G. Wang, L. Wang, Y. Liang, W. Kang, B. Cheng, Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery, Energy Storage Materials, 23 (2019) 314-349.
    [52] J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang, Z. Ma, Q. Huang, D. Chen, G. Liu, Y. Cui, Y. Qi, Z. Zheng, Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium, Nature Communications, 9 (2018) 4480.
    [53] J. Chen, W.A. Henderson, H. Pan, B.R. Perdue, R. Cao, J.Z. Hu, C. Wan, K.S. Han, K.T. Mueller, J.-G. Zhang, Y. Shao, J. Liu, Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels, Nano Letters, 17 (2017) 3061-3067.
    [54] J. Conder, R. Bouchet, S. Trabesinger, C. Marino, L. Gubler, C. Villevieille, Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction, Nature Energy, 2 (2017) 17069.
    [55] M. Cuisinier, P.-E. Cabelguen, S. Evers, G. He, M. Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian, L.F. Nazar, Sulfur speciation in Li–S batteries determined by operando X-ray absorptionspectroscopy, The Journal of Physical Chemistry Letters, 4 (2013) 3227-3232.
    [56] D. Bresser, S. Passerini, B. Scrosati, Recent progress and remaining challenges in sulfur-based lithium secondary batteries–a review, Chemical Communications, 49 (2013) 10545-10562.
    [57] M.-S. Kim, M.S. Kim, V. Do, Y. Xia, W. Kim, W.I. Cho, Facile and scalable fabrication of high-energy-density sulfur cathodes for pragmatic lithium-sulfur batteries, Journal of Power Sources, 422 (2019) 104-112.
    [58] G. Li, Z. Chen, J. Lu, Lithium-sulfur batteries for commercial applications, Chem, 4 (2018) 3-7.
    [59] W. Guo, Y. Fu, A perspective on energy densities of rechargeable Li‐S batteries and alternative sulfur‐based cathode materials, Energy & environmental materials, 1 (2018) 20-27.
    [60] D. Su, D. Zhou, C. Wang, G. Wang, Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives, Advanced Functional Materials, 28 (2018) 1800154.
    [61] S. Zheng, Y. Chen, Y. Xu, F. Yi, Y. Zhu, Y. Liu, J. Yang, C. Wang, In-situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries, ACS Nano, 7 (2013) 10995-11003.
    [62] S.-H. Chung, P. Han, C.-H. Chang, A. Manthiram, A shell-shaped carbon architecture with high-loading capability for lithium sulfide cathodes, Advanced Energy Materials, 7 (2017) 1700537.
    [63] X. Xing, Y. Li, X. Wang, V. Petrova, H. Liu, P. Liu, Cathode electrolyte interface enabling stable Li–S batteries, Energy Storage Materials, 21 (2019) 474-480.
    [64] X. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan, L. Yuan, J. Xie, Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping, Nature Communications, 10 (2019) 1021.
    [65] A. Abdul Razzaq, Y. Yao, R. Shah, P. Qi, L. Miao, M. Chen, X. Zhao, Y. Peng, Z. Deng, High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes, Energy Storage Materials, 16 (2019) 194-202.
    [66] Y. Zhang, Y. Sun, L. Peng, J. Yang, H. Jia, Z. Zhang, B. Shan, J. Xie, Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery, Energy Storage Materials, 21 (2019) 287-296.
    [67] C. Deng, Z. Wang, S. Wang, J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies, Journal of Materials Chemistry A, 7 (2019) 12381-12413.
    [68] M.E. Bhosale, S. Chae, J.M. Kim, J.Y. Choi, Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries, Journal of Materials Chemistry A, 6 (2018) 19885-19911.
    [69] Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angewandte Chemie International Edition, 52 (2013) 13186-13200.
    [70] R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng, F. Li, More reliable lithium-sulfur batteries: status, solutions and prospects, Advanced Materials, 29 (2017) 1606823.
    [71] A. Manthiram, S.-H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects, Advanced Materials, 27 (2015) 1980-2006.
    [72] J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium-sulfur batteries, Energy Storage Materials, 20 (2019) 55-70.
    [73] Z. Zhang, S. Zhang, Rechargeable batteries: materials, technologies and new trends, Springer International Publishing, Switzerland, 1 (2015), 587-610.
    [74] R. Kumar, J. Liu, J.-Y. Hwang, Y.-K. Sun, Recent research trends in Li–S batteries, Journal of Materials Chemistry A, 6 (2018) 11582-11605.
    [75] C. Dong, W. Gao, B. Jin, Q. Jiang, Advances in cathode materials for high-performance lithium-sulfur batteries, iScience, 6 (2018) 151-198.
    [76] G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D.J. Miller, L.A. Curtiss, X. Ji, K. Amine, Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries, Nature Energy, 2 (2017) 17090.
    [77] B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Revisiting scientific issues for industrial applications of lithium–sulfur batteries, Energy & environmental materials, 1 (2018) 196-208.
    [78] Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries, Nature Communications, 4 (2013) 1331.
    [79] C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, Chemical immobilization effect on lithium polysulfides for lithium–sulfur batteries, Small, 14 (2018) 1701986.
    [80] C. Hu, H. Chen, Y. Shen, D. Lu, Y. Zhao, A.-H. Lu, X. Wu, W. Lu, L. Chen, In situ wrapping of the cathode material in lithium-sulfur batteries, Nature Communications, 8 (2017) 479.
    [81] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review, Chemical Reviews, 117 (2017) 10403-10473.
    [82] S.-H. Yu, X. Huang, J.D. Brock, H.D. Abruña, Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study, Journal of the American Chemical Society, 141 (2019) 8441-8449.
    [83] X.-B. Cheng, J.-Q. Huang, Q. Zhang, Review—Li metal anode in working lithium-sulfur batteries, Journal of The Electrochemical Society, 165 (2018) A6058-A6072.
    [84] J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho, M. Jang, S.-Y. Lee, S.-Y. Lee, Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility, Energy & Environmental Science, 12 (2019) 177-186.
    [85] S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, L.-J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries, Journal of the American Chemical Society, 134 (2012) 18510-18513.
    [86] H. Jiang, X.-C. Liu, Y. Wu, Y. Shu, X. Gong, F.-S. Ke, H. Deng, Metal–organic frameworks for high charge–discharge rates in lithium–sulfur batteries, Angewandte Chemie International Edition, 57 (2018) 3916-3921.
    [87] J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Sulfur composite cathode materials for rechargeable lithium batteries, Advanced Functional Materials, 13 (2003) 487-492.
    [88] H. Kim, J. Lee, H. Ahn, O. Kim, M.J. Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries, Nature Communications, 6 (2015) 7278.
    [89] J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv, Y.-B. Jiang, Y. Chen, Y. Duan, D. Wang, Nitrogen‐doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high‐areal‐capacity sulfur cathode with exceptional cycling stability for lithium‐sulfur batteries, Advanced Functional Materials, 24 (2014) 1243-1250.
    [90] X. Li, J. Liang, Y. Lu, Z. Hou, Q. Cheng, Y. Zhu, Y. Qian, Sulfur‐rich phosphorus sulfide molecules for use in rechargeable lithium batteries, Angewandte Chemie International Edition, 56 (2017) 2937-2941.
    [91] Z.-L. Xu, J.-K. Kim, K. Kang, Carbon nanomaterials for advanced lithium sulfur batteries, Nano Today, 19 (2018) 84-107.
    [92] W. Li, Q. Zhang, G. Zheng, Z.W. Seh, H. Yao, Y. Cui, Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance, Nano Letters, 13 (2013) 5534-5540.
    [93] W.-G. Lim, C. Jo, A. Cho, J. Hwang, S. Kim, J.W. Han, J. Lee, Approaching ultrastable high‐rate Li–S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation, Advanced Materials, 31 (2019) 1806547.
    [94] Z. Guo, B. Zhang, D. Li, T. Zhao, P.R. Coxon, C.J. Harris, R. Hao, Y. Liu, K. Xi, X. Li, A mixed microporous/low-range mesoporous composite with high sulfur loading from hierarchically-structured carbon for lithium sulfur batteries, Electrochimica Acta, 230 (2017) 181-188.
    [95] S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao, J. Luo, X. Lin, X. Niu, M. Wu, R. Li, X. Sun, Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries, ACS Energy Letters, 4 (2019) 755-762.
    [96] H. Yuan, H.-J. Peng, J.-Q. Huang, Q. Zhang, Sulfur redox reactions at working interfaces in lithium sulfur batteries: a perspective Advanced Materials Interfaces, 6 (2019) 1802046.
    [97] Y.-T. Liu, D.-D. Han, L. Wang, G.-R. Li, S. Liu, X.-P. Gao, NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery, Advanced Energy Materials, 9 (2019) 1803477.
    [98] D. Fang, Y. Wang, C. Qian, X. Liu, X. Wang, S. Chen, S. Zhang, Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium–sulfur batteries, Advanced Functional Materials, 29 (2019) 1900875.
    [99] H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stabilit, Nano Letters, 11 (2011) 2644-2647.
    [100] J.-Z. Wang, L. Lu, M. Choucair, J.A. Stride, X. Xu, H.-K. Liu, Sulfur-graphene composite for rechargeable lithium batteries, Journal of Power Sources, 196 (2011) 7030-7034.
    [101] Z. Zeng, X. Liu, Sulfur immobilization by ''chemical anchor'' to suppress the diffusion of polysulfides in lithium-sulfur batteries, Advanced Materials Interfaces, 5 (2018) 1701274.
    [102] W. Zhou, Y. Yu, H. Chen, F.J. DiSalvo, H.D. Abruña, Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries, Journal of the American Chemical Society, 135 (2013) 16736-16743.
    [103] F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries, The Journal of Physical Chemistry C, 115 (2011) 6057-6063.
    [104] J. Wang, J. Chen, K. Konstantinov, L. Zhao, S.H. Ng, G.X. Wang, Z.P. Guo, H.K. Liu, Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries, Electrochimica Acta, 51 (2006) 4634-4638.
    [105] L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, J. Liu, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life, Advanced Materials, 24 (2012) 1176-1181.
    [106] J. Wang, J. Yang, J. Xie, N. Xu, A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries, Advanced Materials, 14 (2002) 963-965.
    [107] X.-g. Yu, J.-y. Xie, J. Yang, H.-j. Huang, K. Wang, Z.-s. Wen, Lithium storage in conductive sulfur-containing polymers, Journal of Electroanalytical Chemistry, 573 (2004) 121-128.
    [108] J. Fanous, M. Wegner, J. Grimminger, Ä. Andresen, M.R. Buchmeiser, Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries, Chemistry of Materials, 23 (2011) 5024-5028.
    [109] S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal-sulfur battery cathodes based on PAN-sulfur composites, Journal of the American Chemical Society, 137 (2015) 12143-12152.
    [110] J.-S. Kim, T.H. Hwang, B.G. Kim, J. Min, J.W. Choi, A lithium-sulfur battery with a high areal energy density, Advanced Functional Materials, 24 (2014) 5359-5367.
    [111] L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries, Energy & Environmental Science, 5 (2012) 6966-6972.
    [112] L. Yin, J. Wang, J. Yang, Y. Nuli, A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries, Journal of Materials Chemistry, 21 (2011) 6807-6810.
    [113] Y. Liu, W. Wang, A. Wang, Z. Jin, H. Zhao, Y. Yang, A polysulfide reduction accelerator – NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium–sulfur batteries, Journal of Materials Chemistry A, 5 (2017) 22120-22124.
    [114] Z. Li, J. Zhang, Y. Lu, X.W. Lou, A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances, Science Advances, 4 (2018) eaat1687.
    [115] S. Li, Z. Han, W. Hu, L. Peng, J. Yang, L. Wang, Y. Zhang, B. Shan, J. Xie, Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism, Nano Energy, 60 (2019) 153-161.
    [116] A. Konarov, Z. Bakenov, H. Yashiro, Y.-K. Sun, S.-T. Myung, Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries, Journal of Power Sources, 355 (2017) 140-146.
    [117] J. Li, K. Li, M. Li, D. Gosselink, Y. Zhang, P. Chen, A sulfur–polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability, Journal of Power Sources, 252 (2014) 107-112.
    [118] J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications, Chemical Reviews, 119 (2019) 5298-5415.
    [119] Z. Li, Y. Fang, J. Zhang, X.W. Lou, Necklace-like structures composed of Fe3N@C yolk–shell particles as an advanced anode for sodium-ion batteries, Advanced Materials, 30 (2018) 1800525.
    [120] N.B. Emerce, D. Eroglu, Effect of electrolyte-to-sulfur ratio in the cell on the Li-S battery performance, Journal of The Electrochemical Society, 166 (2019) A1490-A1500.
    [121] M.A. Gialampouki, J. Hashemi, A.A. Peterson, The electrochemical mechanisms of solid–electrolyte interphase formation in lithium-based batteries, The Journal of Physical Chemistry C, 123 (2019) 20084-20092.
    [122] X. Yu, A. Manthiram, Electrode–electrolyte interfaces in lithium–sulfur batteries with liquid or inorganic solid electrolytes, Accounts of Chemical Research, 50 (2017) 2653-2660.
    [123] H. Yang, A. Naveed, Q. Li, C. Guo, J. Chen, J. Lei, J. Yang, Y. Nuli, J. Wang, Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode, Energy Storage Materials, 15 (2018) 299-307.
    [124] E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution, ACS Energy Letters, 2 (2017) 1321-1326.
    [125] X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Advanced Functional Materials, 27 (2017) 1605989.
    [126] L. Wang, Q. Li, H. Yang, J. Yang, Y. Nuli, J. Wang, Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte, Chemical Communications, 52 (2016) 14430-14433.
    [127] Q. Li, H. Yang, A. Naveed, C. Guo, J. Yang, Y. Nuli, J. Wang, Duplex component additive of tris(trimethylsilyl) phosphite-vinylene carbonate for lithium sulfur batteries, Energy Storage Materials, 14 (2018) 75-81.
    [128] Z. Xu, J. Wang, J. Yang, X. Miao, R. Chen, J. Qian, R. Miao, Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte, Angewandte Chemie International Edition, 55 (2016) 10372-10375.
    [129] J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W. Ritchie, J.H.J. Scott, D.C. Joy, Scanning electron microscopy and X-ray microanalysis, Springer, New York, NY 10013, U.S.A., 4 (2017), 65-121.
    [130] A.W. Coats, J.P. Redfern, Thermogravimetric analysis. A review, Analyst, 88 (1963) 906-924.
    [131] X. Yu, J. Xie, Y. Li, H. Huang, C. Lai, K. Wang, Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries, Journal of Power Sources, 146 (2005) 335-339.
    [132] M. Frey, R.K. Zenn, S. Warneke, K. Müller, A. Hintennach, R.E. Dinnebier, M.R. Buchmeiser, Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure, ACS Energy Letters, 2 (2017) 595-604.
    [133] Z.-Q. Jin, Y.-G. Liu, W.-K. Wang, A.-B. Wang, B.-W. Hu, M. Shen, T. Gao, P.-C. Zhao, Y.-S. Yang, A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates, Energy Storage Materials, 14 (2018) 272-278.
    [134] W. Wang, Z. Cao, G.A. Elia, Y. Wu, W. Wahyudi, E. Abou-Hamad, A.-H. Emwas, L. Cavallo, L.-J. Li, J. Ming, Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries, ACS Energy Letters, 3 (2018) 2899-2907.
    [135] M. Surianarayanan, R. Vijayaraghavan, K.V. Raghavan, Spectroscopic investigations of polyacrylonitrile thermal degradation, Journal of Polymer Science Part A: Polymer Chemistry, 36 (1998) 2503-2512.
    [136] Y. Liu, X. Zhao, G.S. Chauhan, J.-H. Ahn, Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries, Applied Surface Science, 380 (2016) 151-158.
    [137] M.S. Solum, R.J. Pugmire, M. Jagtoyen, F. Derbyshire, Evolution of carbon structure in chemically activated wood, Carbon, 33 (1995) 1247-1254.
    [138] Y.-Z. Su, Y.-P. Niu, Y.-Z. Xiao, M. Xiao, Z.-X. Liang, K.-C. Gong, Novel conducting polymer poly[bis(phenylamino)disulfide]: Synthesis, characterization, and properties, Journal of Polymer Science Part A: Polymer Chemistry, 42 (2004) 2329-2339.
    [139] C.-W. Liew, H.M. Ng, A. Numan, S. Ramesh, Poly(acrylic acid)-based hybrid inorganic-organic electrolytes membrane for electrical double layer capacitors application, Polymers, 8 (2016) 179.
    [140] A. Narita, W. Shibayama, H. Ohno, Structural factors to improve physico-chemical properties of zwitterions as ion conductive matrices, Journal of Materials Chemistry, 16 (2006) 1475-1482.
    [141] C.F.J. Kuo, M.A. Weret, H.Y. Hung, M.C. Tsai, C.J. Huang, W.N. Su, B.J. Hwang, Sulfurized−poly(acrylonitrile) wrapped carbonsulfur composite cathode material for high performance rechargeable lithium-sulfur batteries, Journal of Power Sources, 412 (2019) 670-676.
    [142] Y. Wang, L. Xu, M. Wang, W. Pang, X. Ge, Structural identification of polyacrylonitrile during thermal treatment by selective 13C labeling and solid-state 13C NMR spectroscopy, Macromolecules, 47 (2014) 3901-3908.
    [143] Y. Xiang, X. Wang, L. Rao, P. Wang, D. Huang, X. Ding, X. Zhang, S. Wang, H. Chen, Y. Zhu, Conjugated polymers with sequential fluorination for enhanced photocatalytic H2 evolution via proton-coupled electron transfer, ACS Energy Letters, 3 (2018) 2544-2549.
    [144] S. Zeng, L. Li, L. Xie, D. Zhao, N. Wang, S. Chen, Conducting polymers crosslinked with sulfur as cathode materials for high-rate, ultralong-life lithium-sulfur batteries, ChemSusChem, 10 (2017) 3378-3386.
    [145] X. Wang, T. Gao, F. Han, Z. Ma, Z. Zhang, J. L, C. Wang, Stabilizing high sulfur loading Li-S batteries by chemisorption of polysulfide on three-dimensional current collector, Nano Energy, 30 (2016) 700-708.
    [146] J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G.E. Sterbinsky, Z. Feng, D. Su, K.L. More, G. Wang, Z. Wang, G. Wu, Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells, Nature Catalysis, 1 (2018) 935-945.
    [147] J. Yan, X. Liu, B. Li, Capacity fade analysis of sulfur cathodes in lithium-sulfur batteries, Advanced Science, 3 (2016) 1600101.
    [148] T.S. Zeleke, M.-C. Tsai, M.A. Weret, C.-J. Huang, M.K. Birhanu, T.-C. Liu, C.-P. Huang, Y.-L. Soo, Y.-W. Yang, W.-N. Su, B.-J. Hwang, Immobilized single molecular molybdenum disulfide on carbonized polyacrylonitrile for hydrogen evolution reaction, ACS Nano, 13 (2019) 6720-6729.
    [149] A. Khan, M. Jawaid, A.A.P. Khan, A.M. Asiri, Electrically conductive polymers and polymer composites: from synthesis to biomedical applications, John Wiley & Sons, Boschstr. 12, 69469 Weinheim, Germany, 1 (2018), 223-225.
    [150] J. Heiska, M. Nisula, M. Karppinen, Organic electrode materials with solid-state battery technology, Journal of Materials Chemistry A, 7 (2019) 18735-18758.
    [151] T.A. Zegeye, C.-F.J. Kuo, H.-M. Chen, A.M. Tripathi, M.-H. Lin, J.-H. Cheng, A.D. Duma, W.-N. Su, B.-J. Hwang, Dual-confined sulfur in hybrid nanostructured materials for enhancement of lithium-sulfur battery cathode capacity retention, ChemElectroChem, 4 (2017) 636-647.
    [152] T. Nagaura, Lithium ion rechargeable battery, Progress in Batteries & Solar Cells, 9 (1990) 209.
    [153] L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, J. Lu, Interlayer material selection for lithium-sulfur batteries, Joule, 3 (2019) 361-386.
    [154] Y.-X. Song, Y. Shi, J. Wan, S.-Y. Lang, X.-C. Hu, H.-J. Yan, B. Liu, Y.-G. Guo, R. Wen, L.-J. Wan, Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: a degradation mechanism study, Energy & Environmental Science, 12 (2019) 2496-2506.
    [155] M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G.J. Offer, Lithium sulfur batteries, a mechanistic review, Energy & Environmental Science, 8 (2015) 3477-3494.
    [156] N. Zhang, B. Li, S. Li, S. Yang, Mesoporous hybrid electrolyte for simultaneously inhibiting lithium dendrites and polysulfide shuttle in Li-S batteries, Advanced Energy Materials, 8 (2018) 1703124.
    [157] F. Lee, M.-C. Tsai, M.-H. Lin, Y.L. Ni'mah, S. Hy, C.-Y. Kuo, J.-H. Cheng, J. Rick, W.-N. Su, B.-J. Hwang, Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide, Journal of Materials Chemistry A, 5 (2017) 6708-6715.
    [158] M. Zheng, Y. Chi, Q. Hu, H. Tang, X. Jiang, L. Zhang, S. Zhang, H. Pang, Q. Xu, Carbon nanotube-based materials for lithium–sulfur batteries, Journal of Materials Chemistry A, 7 (2019) 17204-17241.
    [159] G. He, X. Ji, L. Nazar, High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons, Energy & Environmental Science, 4 (2011) 2878-2883.
    [160] T.A. Zegeye, C.-F.J. Kuo, A.S. Wotango, C.-J. Pan, H.-M. Chen, A.M. Haregewoin, J.-H. Cheng, W.-N. Su, B.-J. Hwang, Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries, Journal of Power Sources, 324 (2016) 239-252.
    [161] R. Ummethala, M. Fritzsche, T. Jaumann, J. Balach, S. Oswald, R. Nowak, N. Sobczak, I. Kaban, M.H. Rümmeli, L. Giebeler, Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes, Energy Storage Materials, 10 (2018) 206-215.
    [162] J.H. Yun, J.-H. Kim, D.K. Kim, H.-W. Lee, Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium-sulfur batteries, Nano Letters, 18 (2018) 475-481.
    [163] L. Luo, S.-H. Chung, A. Manthiram, Rational design of a dual-function hybrid cathode substrate for lithium-sulfur batteries, Advanced Energy Materials, 8 (2018) 1801014.
    [164] T.A. Zegeye, M.-C. Tsai, J.-H. Cheng, M.-H. Lin, H.-M. Chen, J. Rick, W.-N. Su, C.-F.J. Kuo, B.-J. Hwang, Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries, Journal of Power Sources, 353 (2017) 298-311.
    [165] M. Yu, S. Zhou, Z. Wang, Y. Wang, N. Zhang, S. Wang, J. Zhao, J. Qiu, Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries, Energy Storage Materials, 20 (2019) 98-107.
    [166] H. Yuan, W. Zhang, J.-g. Wang, G. Zhou, Z. Zhuang, J. Luo, H. Huang, Y. Gan, C. Liang, Y. Xia, J. Zhang, X. Tao, Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries, Energy Storage Materials, 10 (2018) 1-9.
    [167] L. Yin, J. Wang, J. Yang, Y. Nuli, A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries, Journal of Materials Chemistry, 21 (2011) 6807-6810.
    [168] L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries, Energy & Environmental Science, 5 (2012) 6966-6972.
    [169] Y. Zhang, Y. Zhao, A. Konarov, D. Gosselink, Z. Li, M. Ghaznavi, P. Chen, One-pot approach to synthesize PPy@S core–shell nanocomposite cathode for Li/S batteries, Journal of Nanoparticle Research, 15 (2013) 2007.
    [170] T.H. Hwang, D.S. Jung, J.-S. Kim, B.G. Kim, J.W. Choi, One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature, Nano Letters, 13 (2013) 4532-4538.
    [171] H. Zhang, M. Zou, W. Zhao, Y. Wang, Y. Chen, Y. Wu, L. Dai, A. Cao, Highly dispersed catalytic Co3S4 among a hierarchical carbon nanostructure for high-rate and long-life lithium–sulfur batteries, ACS Nano, 13 (2019) 3982-3991.
    [172] A. Mentbayeva, A. Belgibayeva, N. Umirov, Y. Zhang, I. Taniguchi, I. Kurmanbayeva, Z. Bakenov, High performance freestanding composite cathode for lithium-sulfur batteries, Electrochimica Acta, 217 (2016) 242-248.
    [173] J. Li, K. Li, M. Li, D. Gosselink, Y. Zhang, P. Chen, A sulfur–polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability, Journal of Power Sources, 252 (2014) 107-112.
    [174] Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries, Chemical Society Reviews, 45 (2016) 5605-5634.
    [175] W.J. Chung, J.J. Griebel, E.T. Kim, H. Yoon, A.G. Simmonds, H.J. Ji, P.T. Dirlam, R.S. Glass, J.J. Wie, N.A. Nguyen, B.W. Guralnick, J. Park, Á. Somogyi, P. Theato, M.E. Mackay, Y.-E. Sung, K. Char, J. Pyun, The use of elemental sulfur as an alternative feedstock for polymeric materials, Nature Chemistry, 5 (2013) 518.
    [176] R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li-S batteries, Advanced Energy Materials, 5 (2015) 1500408.
    [177] S. Rehman, K. Khan, Y. Zhao, Y. Hou, Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives, Journal of Materials Chemistry A, 5 (2017) 3014-3038.
    [178] G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I.R. Gentle, F. Li, H.-M. Cheng, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries, ACS Nano, 7 (2013) 5367-5375.
    [179] Y.-Z. Zhang, Z. Zhang, S. Liu, G.-R. Li, X.-P. Gao, Microporous carbon polyhedrons encapsulated polyacrylonitrile nanofibers as sulfur immobilizer for lithium-sulfur battery, ACS Applied Materials & Interfaces, 10 (2018) 8749-8757.
    [180] Z. Li, J.T. Zhang, Y.M. Chen, J. Li, X.W. Lou, Pie-like electrode design for high-energy density lithium–sulfur batteries, Nature Communications, 6 (2015) 8850.
    [181] A. Chen, W. Liu, H. Hu, T. Chen, B. Ling, K. Liu, Facile preparation of ultrafine Ti4O7 nanoparticle-embedded porous carbon for high areal capacity lithium–sulfur batteries, Journal of Materials Chemistry A, 6 (2018) 20083-20092.
    [182] D. Guo, X.a. Chen, H. Wei, M. Liu, F. Ding, Z. Yang, K. Yang, S. Wang, X. Xu, S. Huang, Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries, Journal of Materials Chemistry A, 5 (2017) 6245-6256.
    [183] X. Liu, J.-Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries, , Advanced Materials, 29 (2017) 1601759.
    [184] J. Balach, J. Linnemann, T. Jaumann, L. Giebeler, Metal-based nanostructured materials for advanced lithium–sulfur batteries, Journal of Materials Chemistry A, 6 (2018) 23127-23168.
    [185] Y. Zhong, X. Xu, Y. Liu, W. Wang, Z. Shao, Recent progress in metal–organic frameworks for lithium–sulfur batteries, Polyhedron, 155 (2018) 464-484.
    [186] J. Zhou, X. Yu, X. Fan, X. Wang, H. Li, Y. Zhang, W. Li, J. Zheng, B. Wang, X. Li, The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries, Journal of Materials Chemistry A, 3 (2015) 8272-8275.
    [187] F. Li, X. Zhang, X. Liu, M. Zhao, Novel conductive metal-organic framework for a high-performance lithium-sulfur battery host: 2D Cu-Benzenehexathial (BHT), ACS Applied Materials & Interfaces, 10 (2018) 15012-15020.
    [188] S. Suriyakumar, A.M. Stephan, N. Angulakshmi, M.H. Hassan, M.H. Alkordi, Metal–organic framework@SiO2 as permselective separator for lithium–sulfur batteries, Journal of Materials Chemistry A, 6 (2018) 14623-14632.
    [189] B. Hao, H. Li, W. Lv, Y. Zhang, S. Niu, Q. Qi, S. Xiao, J. Li, F. Kang, Q.-H. Yang, Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries, Nano Energy, 60 (2019) 305-311.
    [190] Z. Wang, Y. Chen, V. Battaglia, G. Liu, Improving the performance of lithium–sulfur batteries using conductive polymer and micrometric sulfur powder, Journal of Materials Research, 29 (2014) 1027-1033.
    [191] G. Ma, F. Huang, Z. Wen, Q. Wang, X. Hong, J. Jin, X. Wu, Enhanced performance of lithium sulfur batteries with conductive polymer modified separators, Journal of Materials Chemistry A, 4 (2016) 16968-16974.
    [192] F. Xu, S. Yang, G. Jiang, Q. Ye, B. Wei, H. Wang, Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries, ACS Applied Materials & Interfaces, 9 (2017) 37731-37738.
    [193] A. Vizintin, J. Bitenc, A. Kopač Lautar, K. Pirnat, J. Grdadolnik, J. Stare, A. Randon-Vitanova, R. Dominko, Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy, Nature Communications, 9 (2018) 661.
    [194] J. Wang, L. Lu, D. Shi, R. Tandiono, Z. Wang, K. Konstantinov, H. Liu, A conductive polypyrrole-coated, sulfur-carbon nanotube composite for use in lithium-sulfur batteries, ChemPlusChem, 78 (2013) 318-324.
    [195] P. Acker, L. Rzesny, C.F.N. Marchiori, C.M. Araujo, B. Esser, π-Conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials, Advanced Functional Materials, 29 (2019) 1906436.
    [196] G. Li, X. Wang, M.H. Seo, M. Li, L. Ma, Y. Yuan, T. Wu, A. Yu, S. Wang, J. Lu, Z. Chen, Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries, Nature Communications, 9 (2018) 705.
    [197] A. Ahmad, Q. Meng, S. Melhi, L. Mao, M. Zhang, B.-H. Han, K. Lu, Z. Wei, Ahierarchically porous hypercrosslinked and novel quinone based stable organic polymer electrode for lithium-ion batteries, Electrochimica Acta, 255 (2017) 145-152.
    [198] R.B. Araujo, A. Banerjee, P. Panigrahi, L. Yang, M. Strømme, M. Sjödin, C.M. Araujo, R. Ahuja, Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application, Journal of Materials Chemistry A, 5 (2017) 4430-4454.
    [199] J. Xu, D. Su, W. Zhang, W. Bao, G. Wang, A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries, Journal of Materials Chemistry A, 4 (2016) 17381-17393.
    [200] J. Wu, Z. Pan, Y. Zhang, B. Wang, H. Peng, The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries, Journal of Materials Chemistry A, 6 (2018) 12932-12944.
    [201] Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries, Advanced Energy Materials, 2 (2012) 742-769.
    [202] Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, R. Wang, Porous organic polymers for polysulfide trapping in lithium-sulfur batteries, Advanced Functional Materials, 28 (2018) 1707597.
    [203] H. Chen, C. Wang, C. Hu, J. Zhang, S. Gao, W. Lu, L. Chen, Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of lithium–sulfur batteries, Journal of Materials Chemistry A, 3 (2015) 1392-1395.
    [204] Y. Liu, A.K. Haridas, K.-K. Cho, Y. Lee, J.-H. Ahn, Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries, The Journal of Physical Chemistry C, 121 (2017) 26172-26179.
    [205] Y.-Z. Zhang, Z.-Z. Wu, G.-L. Pan, S. Liu, X.-P. Gao, Microporous Carbon Polyhedrons Encapsulated Polyacrylonitrile Nanofibers as Sulfur Immobilizer for Lithium–Sulfur Battery, ACS Applied Materials & Interfaces, 9 (2017) 12436-12444.
    [206] D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes, Advanced Energy Materials, 5 (2015) 1400993.
    [207] B.-C. Yu, J.-W. Jung, K. Park, J.B. Goodenough, A new approach for recycling waste rubber products in Li–S batteries, Energy & Environmental Science, 10 (2017) 86-90.
    [208] D.C. Harris, Quantitative chemical analysis, Macmillan, United States of America, New York, NY 10010, AP20-AP27, 2010.

    無法下載圖示 全文公開日期 2025/01/03 (校內網路)
    全文公開日期 2030/01/03 (校外網路)
    全文公開日期 2030/01/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE