簡易檢索 / 詳目顯示

研究生: 周珉卉
Min-Hui Chou
論文名稱: 靜電紡絲製備聚偏氟乙烯奈米纖維膜於吸音特性之研究
Sound Absorption of Electrospun Polyvinylidene Fluoride Nanofibrous Membranes
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 黃博雄
Po-Hsiung Huang
周振嘉
Chen-Chia Chou
黃旭曄
Hsu-Yeh Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 64
中文關鍵詞: 靜電紡絲聚偏氟乙烯導電材料壓電特性吸音係數
外文關鍵詞: Electrospinning, Polyvinylidene fluoride (PVDF), Conductive materials, Piezoelectric properties, Sound absorption coefficient.
相關次數: 點閱:328下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電聲轉換器是一種常見的能量轉換裝置,其是透過一壓電材料將機械能轉換成電能,在感測、致動與電能產生等運用上,具有低成本及高效率的優勢。
    本研究使用廣泛應用於傳感器、電能轉換裝置上的壓電材料聚偏氟乙烯 (Polyvinylidene fluoride, PVDF),結合靜電紡絲 (Electrospinning, ES) 技術製備出擁有良好壓電性能的PVDF奈米纖維膜,並探討其晶體結構及添加碳材料對PVDF奈米纖維膜的壓電性能之影響。結果顯示,奈米纖維膜的多孔性 (Porous material) 及高比表面積 (Specific Surface Area) 能增加材料與聲波之間的振動及摩擦,得到機械能與電能的轉換,進而達到吸音的效果。而ES同時能有效地誘導PVDF的β結晶相,且添加奈米碳材:奈米碳管 (Carbon Nanotubes, CNTs) 以及石墨烯 (Graphene, Gp) 後更能利用界面極化效應,以增加壓電特性。在吸音性能的部分,加入奈米碳材後除了提升電紡PVDF奈米纖維膜在低頻吸收效果之外,更使吸收區域往更低頻偏移。


    Polyvinylidene fluoride (PVDF)-based piezoelectric polymers are of interest for applications in audio transducers. A piezoelectric material subjected to stress or force generates an electrical potential. Thus, reduction in vibrations and noise can be achieved using piezoelectric materials.
    In this study, a novel sound-absorbing material was developed using electrospun piezoelectric polyvinylidene fluoride (PVDF) membranes. Effects of conductive materials and electrospinning on the crystal structure and piezoelectric properties of PVDF nanofibrous membranes were examined. Results showed that electrospinning effectively induces the β phase formation and increased piezoelectricity. Addition conductive materials further improved the piezoelectricity through interfacial polarization. Electrospun nanofibrous membranes exhibited high surface area providing a large number of contact sites with the sound waves. This resulted in higher sound energy absorption in the middle-frequency region by friction/vibration mechanisms. The piezoelectric electrospun PVDF samples are crucial in converting sound energy to electric potential and absorbing sound waves in a low-frequency region. Sound absorption of adding conductive materials into PVDF had higher piezoelectricity and shifted further to a lower frequency region. Thus, the electrospun PVDF/acoustic foam presented herein is potentially a practical and efficient sound absorber because of its favorable absorption performance, particularly in the low- and middle-frequency regions.

    Table of Contents ABSTRACT Table of Contents List of Figure List of Tables Chapter 1: Introduction 1.1 Research Background 1.2 Motivation and Objective Chapter 2: Literature Review 2.1 Electrospinning Technology 2.2 Acoustic Performance 2.2.1 Mechanism of Sound Absorption 2.2.2 Factors Influencing Sound Absorption Chapter 3: Materials and Methods 3.1 Materials 3.2 Methods 3.2.1 Experimental Flow Chart 3.2.2 Sample Preparation 3.3 Analysis Methods 3.3.1 Scanning Electron Microscopy 3.3.2 Transmission Electron Microscope 3.3.3 Thermogravimetry Analysis 3.3.4 Differential scanning calorimetry 3.3.5 Tensile Test 3.3.6 Dynamic mechanical analysis 3.3.7 X-Ray Diffraction 3.3.8 Fourier Transform Infrared Spectroscopy 3.3.9 Piezoelectric Coefficient 3.3.10 Specific Surface Area 3.3.11 Porosity 3.3.12 Sound-absorption Coefficient Chapter 4: Results and Discussion 4.1 The Morphology of Electrospun Nanofibrous Membranes 4.2 Thermal Properties of Electrospun Nanofibrous Membranes 4.3 Mechanical Properties of Electrospun Nanofibrous Membranes 4.4 Crystallinity of Electrospun Nanofibrous Membranes 4.5 Piezoelectric Properties of Electrospun Nanofibrous Membranes 4.6 Sound-Absorption Coefficient of Electrospun Nanofibrous Membranes Chapter 5: Conclusions Reference Appendix A

    [1] Kalinova K. A Sound Absorptive Element Comprising an Acoustic Resonance Nanofibrous Membrane. Recent Patents on Nanotechnology. 2015;9:61-69.
    [2] Shoshani YZ. Effect of Nonwoven Backings on the Noise Absorption Capacity of Tufted Carpets. Textile Research Journal. 1990;60:452-456.
    [3] Shoshani YZ, Wilding MA. Effect of Pile Parameters on the Noise Absorption Capacity of Tufted Carpets. Textile Research Journal. 1991;61:736-742.
    [4] Ford RD, Bakker PGH. The Acoustical Properties of Various Carpet and Underlay Combinations. The Journal of The Textile Institute. 1984;75(3):164-174.
    [5] Fellah ZEA, Berger S, Lauriks W, Depollier C, Fellah M. Measuring the porosity of porous materials having a rigid frame via reflected waves: A time domain analysis with fractional derivatives. Journal of Applied Physics. 2003;93(1):296-303.
    [6] Rabbi A, Bahrambeygi H, Shoushtari AM, Nasouri K. Incorporation of Nanofiber Layers in Nonwoven Materials for Improving Their Acoustic Properties. Journal of Engineered Fibers and Fabrics. 2013;8:36-41.
    [7] Feng C, Khulbe KC, Matsuura T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. Journal of Applied Polymer Science. 2010;115:756-776.
    [8] Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polymers for Advanced Technologies. 2005;16:276-282.
    [9] Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific: Singapore. 2005.
    [10] Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology. 2003;63:2223-2253.
    [11] Wu CM, Yu SA, Lin SL. Graphene modified electrospun poly(vinyl alcohol) nanofibrous membranes for glucose oxidase immobilization. Express Polymer Letters. 2014;8:565-573.
    [12] Khan W, Asmatulu R, Yildirim MB. Acoustical Properties of Electrospun Fibers for Aircraft Interior Noise Reduction. Aerospace Engineering. 2012;25:376-382.
    [13] Kalinová K, Jirsák O. Resonance effect of nanofibrous layer. Proceedings of the 5th AUTEX World Textile Conference, Portorož, Slovenia2005.
    [14] Iannace G. Acoustic properties of nanofibers. Noise & Vibration Worldwide. 2014;45:29-33.
    [15] Kalinová K. Nanofibrous resonant membrane for acoustic applications. Nanomaterials. 2011:1-6.
    [16] Lee YY, Lee EWM, Ng CF. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. Journal of Sound and Vibration. 2005;287(1–2):227-243.
    [17] Kim J, Im BS, Lee J. Active noise suppression of smart panels including piezoelectric devices and absorbing materials. SPIE's 7th annual international symposium on smart structures and materials. 2000:94-100.
    [18] Kim J, Lee JK. Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material. The Journal of the Acoustical Society of America. 2002;112(3):990-998.
    [19] Hong W, Bin X, Xiling L, Jianru H, Shuxia S, Hu L. The piezoelectric and elastic properties of berlinite and the effect of defects on the physical properties. Journal of Crystal Growth. 1986;79(1):227-231.
    [20] Kurosawa S, Tawara E, Kamo N, Kobatake Y. Oscillating frequency of piezoelectric quartz crystal in solutions. Analytica Chimica Acta. 1990;230:41-49.
    [21] Pinheiro MVB, Fantini C, Krambrock K, Persiano AIC, Dantas MSS, Pimenta MA. OH/F substitution in topaz studied by Raman spectroscopy. Physical Review B. 2002;65(10):104301.
    [22] Zhang S, Eitel RE, Randall CA, Shrout TR, Alberta EF. Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Applied Physics Letters. 2005;86(26):262904.
    [23] Jung SB, Kim SW. Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control. Precision Engineering. 1994;16(1):49-55.
    [24] Emanetoglu NW, Gorla C, Liu Y, Liang S, Lu Y. Epitaxial ZnO piezoelectric thin films for saw filters. Materials Science in Semiconductor Processing. 1999;2(3):247-252.
    [25] Cha S, Kim SM, Kim H, Ku J, Sohn JI, Park YJ, Song BG, Jung MH, Lee EK, Choi BL, Park JJ, Wang ZL, Kim JM, Kim K. Porous PVDF As Effective Sonic Wave Driven Nanogenerators. Nano Letters. 2011;11(12):5142-5147.
    [26] Fang XQ, Liu JX, Gupta V. Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale. 2013;5:1716-1726.
    [27] Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Functionalized Graphene–PVDF Foam Composites for EMI Shielding. Macromolecular Materials and Engineering. 2011;296(10):894-898.
    [28] Qi Y, Jafferis NT, Lyons K, Lee CM, Ahmad H, McAlpine MC. Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion. Nano Letters. 2010;10(2):524-528.
    [29] Nandi A, Mandelkern L. The influence of chain structure on the equilibrium melting temperature of poly (vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics. 1991;29(10):1287-1297.
    [30] Cross LE. Ferroelectric materials for electromechanical transducer applications. Materials Chemistry and Physics. 1996;43:108-115.
    [31] Huang S, Yee WA, Tjiu WC, Liu Y, Kotaki M, Boey YCF, Ma J, Liu J, Lu X. Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures. Langmuir. 2008;24(23):13621-13626.
    [32] Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions. 1989;18(3-4):143-211.
    [33] Wang J, Li H, Liu J, Duan Y, Jiang S, Yan S. On the α → β Transition of Carbon-Coated Highly Oriented PVDF Ultrathin Film Induced by Melt Recrystallization. Journal of the American Chemical Society. 2003;125(6):1496-1497.
    [34] Salimi A, Yousefi AA. Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing. 2003;22:699-704.
    [35] Humphreys J, Lewis ELV, Ward IM, Nix EL, McGrath JC. A study of the mechanical anisotropy of high-draw, low-draw, and voided PVDF. Polymer Science Part B: Polymer Physics. 1988;26:141-158.
    [36] Lee C, Wei X, Kysar JW, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385-388.
    [37] Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Munoz-Sandoval E, Cano-Márquez AG, Jean-Christophe C, Terrones H. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today. 2010;5(4):351-372.
    [38] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials. 2010;22:3906-3924.
    [39] Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Progress in Polymer Science. 2010;35(11):1350-1375.
    [40] Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-Based Ultracapacitors. Nano Letters. 2008;8(10):3498-3502.
    [41] Tjong SC. Synthesis and Structural–Mechanical Property Characteristics of Graphene–Polymer Nanocomposites. Nanocrystalline Materials, Oxford: Elsevier. 2014: 335-375.
    [42] Neppalli R, Wanjale S, Birajdar M, Causin V. The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride). European Polymer Journal. 2013;49(1):90-99.
    [43] Ansari S, Giannelis EP. Functionalized graphene sheet—Poly (vinylidene fluoride) conductive nanocomposites. Journal of Polymer Science Part B: Polymer Physics. 2009;47(9):888-897.
    [44] Yao SH, Yuan JK, Zhou T, Dang ZM, Bai J. Stretch-Modulated Carbon Nanotube Alignment in Ferroelectric Polymer Composites: Characterization of the Orientation State and Its Influence on the Dielectric Properties. The Journal of Physical Chemistry C. 2011;115(40):20011-20017.
    [45] Layek RK, Samanta S, Chatterjee DP, Nandi AK. Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer. 2010;51(24):5846-5856.
    [46] Wang J, Wu J, Xu W, Zhang Q, Fu Q. Preparation of poly(vinylidene fluoride) films with excellent electric property, improved dielectric property and dominant polar crystalline forms by adding a quaternary phosphorus salt functionalized graphene. Composites Science and Technology. 2014;91:1-7.
    [47] Levi N, Czerw R, Xing S, Iyer P, Carroll DL. Properties of Polyvinylidene Difluoride−Carbon Nanotube Blends. Nano Letters. 2004;4(7):1267-1271.
    [48] Ahn Y, Lim JY, Hong SM, Lee J, Ha J, Choi HJ, Seo Y. Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride). Physical Chemistry C. 2013;117:11791-11799.
    [49] Huang S, Yee WA, Tjiu WC, Liu Y, Kotaki M, Boey YCF, Ma J, Liu T, Liu X. Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures. Langmuir. 2008;24:13621-13626.
    [50] Mago G, Kalyon DM, Fisher FT. Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. Nanomaterials. 2008:1-8.
    [51] Huang X, Jiang P, Kim C, Liu F, Yin Y. Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). European Polymer Journal. 2009;45(2):377-386.
    [52] Kim J, Loh KJ, Lynch JP. Piezoelectric polymeric thin films tuned by carbon nanotube fillers. Proceedings of SPIE–15th Annual International Symposium on Smart Structures and Materials, vol. 6932 San Diego2008.
    [53] Gibson P, Schreuder–Gibson H, Rivin D. Electrospun fiber mats: transport properties. AIChE journal. 1999;45(1):190-195.
    [54] Shin YM, Hohman MM, Brenner MP, Rutledge GC. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001;42(25):9955-9967.
    [55] Formhals A. Process and apparatus for preparing artificial threads. In: Patent U, editor., vol. 1975504: US Patent; 1934.
    [56] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7(3):216.
    [57] Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics. 2000;87(9):4531-4547.
    [58] Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics. 2001;90(9):4836-4846.
    [59] Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40(16):4585-4592.
    [60] Lee YE, Joo CW. Sound absorption properties of thermally bonded nonwovens based on composing fibers and production parameters. Journal of applied polymer science. 2004;92(4):2295-2302.
    [61] Bliss DB. Study of bulk reacting porous sound absorbers and a new boundary condition for thin porous layers. Journal of the Acoustical Society of America. 1982;71:533 - 545.
    [62] Ren M, Jacobsen F. A method of measuring the dynamic flow resistance and reactance of porous materials. Applied Acoustics. 1993;39(4):265-276.
    [63] Seddeq HS. Factors influencing acoustic performance of sound absorptive materials. Aust J Basic Appl Sci. 2009;3(4):4610-4617.
    [64] Coates M, Kierzkowski M. Acoustic Textiles-Lighter, Thinner and More Absorbent. Technical-Textiles-International, 2002.
    [65] Koizumi T, Tsujiuchi N, Adachi A. The Development of Sound Absorbing Materials Using Natural Bamboo Fibers, High Performance. WIT press, 2002.
    [66] Branciforti MC, Sencadas V, Lanceros‐Mendez S, Gregorio R. New technique of processing highly oriented poly (vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science Part B: Polymer Physics. 2007;45(19):2793-2801.
    [67] Gregorio Jr R, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics. 1994;32(5):859-870.
    [68] Sencadas V, Gregorio Jr R, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. Journal of Macromolecular Science®. 2009;48(3):514-525.
    [69] Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527-2536.
    [70] Magyar RJ, Root S, Mattsson TR. Equations of state for mixtures: results from density-functional (DFT) simulations compared to high accuracy validation experiments on Z. Journal of Physics: Conference Series. 2014;500(16):162004.
    [71] Choi SW, Kim JR, Ahn YR, Jo SM, Cairns EJ. Characterization of Electrospun PVdF Fiber-Based Polymer Electrolytes. Chemistry of Materials. 2007;19(1):104-115.
    [72] Layek RK, Samanta S, Chatterjee DP, Nandi AK. Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer. 2010;51(24):5846-5856.
    [73] Mandal A, Nandi AK. Physical properties of poly(vinylidene fluoride) composites with polymer functionalized multiwalled carbon nanotubes using nitrene chemistry. Journal of Materials Chemistry. 2011;21(39):15752-15763.
    [74] Wang B, Gong X, Li J, Shang Y, Shi D, de Claville Christiansen J, Yu D, Jiang S. Double equilibrium melting temperatures and zero growth temperature of PVDF in PVDF/graphene composites. Journal of Polymer Research. 2015;22(12):1-8.
    [75] Zhang WB, Zhang ZX, Yang JH, Huang T, Zhang N, Zheng XT, Wang Y, Zhou ZW. Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon. 2015;90:242-254.
    [76] El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A, Bousmina M. Preparation and characterization of melt-blended graphene nanosheets–poly(vinylidene fluoride) nanocomposites with enhanced properties. Journal of Applied Polymer Science. 2013;127(6):4697-4707.
    [77] He L, Xu Q, Hua C, Song R. Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polymer Composites. 2010;31:921-927.
    [78] Jang J, Min B, Yeum J, Jeong Y. Structures and physical properties of graphene/PVDF nanocomposite films prepared by solution-mixing and melt-compression. Fibers Polym. 2013;14(8):1332-1338.
    [79] Mijovic J, Sy JW, Kwei TK. Reorientational Dynamics of Dipoles in Poly(vinylidene fluoride)/Poly(methyl methacrylate) (PVDF/PMMA) Blends by Dielectric Spectroscopy. Macromolecules. 1997;30(10):3042-3050.
    [80] Sy JW, Mijovic J. Reorientational Dynamics of Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blends by Broad-Band Dielectric Relaxation Spectroscopy. Macromolecules. 2000;33(3):933-946.
    [81] An N, Liu S, Fang C, Yu R, Zhou X, Cheng Y. Preparation and properties of β-phase graphene oxide/PVDF composite films. Journal of Applied Polymer Science. 2015;132.
    [82] Neidhöfer M, Beaume F, Ibos L, Bernès A, Lacabanne C. Structural evolution of PVDF during storage or annealing. Polymer. 2004;45:1679-1688.
    [83] Ju HM, Choi SH, Huh SH. X-ray diffraction patterns of thermally-reduced graphenes. Journal of the Korean Physical Society. 2010;57:1649-1652.
    [84] El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A. Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Applied Surface Science. 2012;258(19):7668-7677.
    [85] Duan XH, Wang HQ, Li ZB, Zhu LK, Chen R, Kong DY, Zhao Z. Sound absorption of a flexible micro-perforated panel absorber based on PVDF piezoelectric film. Applied Acoustics. 2015;88:84-89.
    [86] Wu CM, Chou MH. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes. Composites Science and Technology. 2016;127:127-133.

    無法下載圖示 全文公開日期 2021/07/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE