簡易檢索 / 詳目顯示

研究生: 劉俊良
Chun-Liang Liu
論文名稱: 以模糊田口為基礎之新型電池充電機
A Novel Battery Charger with Fuzzy-Based Taguchi Method
指導教授: 劉益華
Yi-Hua Liu
口試委員: 陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
劉添華
Tian-Hua Liu
羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
林長華
Chang-Hua Lin
王順忠
Shun-Chung Wang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 135
中文關鍵詞: 田口實驗方法模糊田口實驗方法直交表模糊控制五階段定電流充電法
外文關鍵詞: Taguchi Method, Fuzzy-Taguchi Method, Orthogonal Array, Fuzzy Logic Control, Five-Step Constant Current Charging Algorithm
相關次數: 點閱:435下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋰離子電池已被廣泛地用於各種應用,其中包括消費性電子產品、綠色能源系統和電動車輛。由於充電方法將會影響鋰離子電池使用壽命與相關特性,因此利用智慧型充電法則來輸出適當之充電電流是可行且必要的。本論文提出適用於鋰離子電池之模糊五階段充電法,所提技術可利用溫差與溫差變化趨勢來調整充電電流,與傳統定電流-定電壓(Constant Current-Constant Voltage, CC–CV)充電方法以及五階段定電流方法比較,所提方法可以降低充電時間並提升充電效率。為了進一步提高模糊五階段充電法的性能,本論文利用模糊田口實驗方法來搜尋較佳的輸出歸屬函數。模糊田口實驗方法可考量多個品質特性做為衡量指標,同時僅需54次實驗便可以獲得較佳的輸出歸屬函數設定值。與傳統的定電流-定電壓充電法比較,模糊田口實驗方法獲得之較佳解在充電效率與 循環壽命方面的改善分別可提升1.65%與59.3%,同時充電時間與平均溫升可以減少58.3%與26.7%。


Lithium ion (Li-ion) batteries have been widely used in various kinds of applications, including consumer electronics, green energy systems and electrical vehicles. Since the charging method has a significant influence on the performance and lifetime of Li-ion batteries, an intelligent charging algorithm which can properly determine the charging current is essential. In this dissertation, a fuzzy-logic-control-based (FLC-based) five-stage Li-ion battery charger is proposed. The proposed charger takes the temperature rise and the gradient of temperature rise of battery into account, and adjusts the charging current accordingly. Comparing with the conventional constant current-constant voltage (CC-CV) and five-stage CC charging methods, the proposed charger is capable of charging the Li-ion batteries with shorter charging time and higher charging efficiency. To further improve the performance of the proposed FLC, the fuzzy-based Taguchi method is utilized to determine the optimal output membership functions (MFs). The fuzzy-based Taguchi method can be regarded as a multiple performance characteristic index (MPCI) problem and can obtain the optimal output MFs in only 54 experimental tests. Comparing with the conventional CC-CV method, the charging efficiency and the obtained cycle life of the Li-ion battery are increased by 1.65% and 59.3%. The charging time and average temperature rise in the proposed are reduced about 58.3% and 26.7%, respectively.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的 4 1.4 論文大綱 5 1.5 論文貢獻度 5 第二章 二次電池與二次電池充電技術概說 6 2.1 二次電池構造及化學反應 6 2.1.1 鉛酸電池 7 2.1.2 鎳鎘電池 8 2.1.3 鎳氫電池 9 2.1.4 鋰電池 10 2.1.4.1 鋰離子電池 10 2.1.4.2 鋰聚合物電池 12 2.2 二次電池性能比較 12 2.3 二次電池充電技術概說 16 2.3.1定電壓(Constant Voltage, CV)充電法 16 2.3.2 定電流(Constant Current, CC)充電法 17 2.3.3 定電流切換定電壓(CC-CV)充電法 17 2.3.4 文獻中提出之進階充電法 18 2.3.4.1 定電流-定電壓充電法之衍生型充電法 19 2.3.4.2 脈衝式充電法 27 2.3.4.3 多階段恆定電流充電法(Multi-Step Constant Current Charging, MSCCC) 34 第三章 田口實驗方法簡介 41 3.1田口實驗方法簡介 41 3.2 田口實驗方法與步驟 44 3.2.1 直交表簡介 47 3.2.2 田口實驗法相關係數定義 49 3.3田口實驗方法之搜尋流程 55 第四章 模糊理論介紹 58 4.1 模糊控制器概論 58 4.2 模糊控制器架構 60 4.3 模糊控制器變數選擇 62 4.4 模糊控制器歸屬函數形式 62 4.4.1 離散式的歸屬函數 63 4.4.2 連續式的歸屬函數 63 4.5 模糊控制器之規則庫 65 4.6 模糊控制器之推論引擎 66 4.7 模糊控制器之解模糊化 66 4.7.1重心法(Center of Gravity) 67 4.7.2最大平均法(Mean of Maxima) 67 第五章 模糊五階段數位充電機介紹 68 5.1 模糊五階段充電法 68 5.2 模糊五階段控制器設計 69 5.2.1模糊五階段充電法之模糊控制器變數選擇與歸屬函數設計 70 5.2.2模糊五階段充電法之模糊控制器規則庫、推論引擎與解模糊化 74 5.2.3模糊五階段充電法之模糊控制器歸屬函數大小設定之討論 76 5.3 模糊五階段充電機實現 78 5.3.1 LabVIEW簡介 78 5.3.2 模糊五階段充電機控制介面程式 79 5.3.3 監控介面程式 82 第六章 模糊田口實驗法與實驗結果 85 6.1 模糊田口實驗法簡介 85 6.2 模糊田口實驗法使用之模糊控制器設計 88 6.2.1 模糊田口實驗法使用之模糊控制器的變數設定 88 6.2.2模糊田口實驗法使用之模糊控制器的規則庫 91 6.2.3模糊田口實驗法使用之模糊控制器的推論引擎與解模糊化 94 6.3使用模糊田口實驗法進行模糊五階段充電法之較佳輸出歸屬函數搜尋實驗結果 94 6.3.1 充電法則之溫升比較 94 6.3.2 模糊五階段充電法之較佳輸出歸屬函數搜尋結果 96 第七章 結論與未來研究方向 105 7.1 結論 105 7.2 未來研究方向 106 參考文獻 108

參考文獻
[1] S. Lee, J. Kim, and J. Lee , “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” J. Power Sources, vol. 185, no. 2, pp. 1367–1373, Dec. 2008.
[2] Y. C. Chuang and Y. L. Ke, “High-efficiency and low-stress ZVT–PWM DC-to-DC converter for battery charger,” IEEE Trans. on Industrial Electronics, vol. 55, no. 8, pp.3030–3037, Aug. 2008.
[3] M. A. Alahmad and H. L. Hess, “Evaluation and analysis of a new solid-state rechargeable microscale lithium battery,” IEEE Trans. on Industrial Electronics, vol. 55, no. 9, pp.3391–3401, Sept. 2008.
[4] M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From single cell model to battery pack simulation for Li-ion batteries,” J. Power Sources, vol. 186, no. 2, pp. 500–507, Jan. 2009.
[5] J. Lee, O. Nam, and B.H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering,” J. Power Sources, vol. 174, no. 1, pp. 9–15, Nov. 2007.
[6] I. S. Kim, “Nonlinear state of charge estimator for hybrid electric vehicle battery,” IEEE Trans. on Power Electronics, vol. 23, no. 4, pp. 2027–2034, July 2008.
[7] J. Yan, G. Xu, H. Qian, Y. Xu, and Z. Song, “Model predictive control-based fast charging for vehicular batteries,” Energies, vol.4, no. 7, pp. 1178–1196, Aug. 2011.
[8] N. Omar, M. Daowd, P. Bossche, O. Hegazy, J. Smekens, T. Coosemans, and J. Mierlo, “Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics,” Energies, vol.5, no. 8, pp.2952–2988, Aug. 2012.
[9] K. Shuaib, L. Zhang, A. Gaouda, and M. Abdel-Hafez, “A PEV charging service model for smart grids,” Energies, vol. 5, no. 11, pp.4665–4682,Nov. 2012.
[10] M. Nguyen, D. Nguyen, and Y. Yoon, “A new battery energy storage charging/discharging scheme for wind power producers in real-time markets,” Energies, vol. 5, no. 12, pp.5439–5452,Dec. 2012.
[11] J. Shiau, C. Ma, “Li-ion battery charging with a buck-boost power converter for a solar powered battery management system,” Energies, vol. 6, no. 3, pp.1669–1699,Mar. 2013.
[12] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
[13] L. R. Chen, “PLL-based battery charge circuit topology,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1344–1346, Dec. 2004.
[14] B. P. McGrath, D. G. Holmes, P. J. McGoldrick, and A. D. McIver, “Design of a soft-switched 6-kW battery charger for traction applications,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1136–1144, July 2007.
[15] A. Kirchev, M. Perrin, and E. Lemaire et al, “Studies of the pulse charge of lead-acid batteries for PV applications Part I. Factors influencing the mechanism of the pulse charge of the positive plate,” J. Power Sources, vol. 177, no. 1, pp. 217–225, Feb. 2008.
[16] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
[17] P. Thounthong, S. Rael, and B. Davat, “Control algorithm of fuel cell and batteries for distributed generation system,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 148–155 Mar. 2008.
[18] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller,” IEEE Trans. on Industrial Electronics, vol. 48, no. 3, pp.585-593, Jun. 2001.
[19] L. R. Chen, R. C. Hsu, and C. S. Liu, “A Design of a Grey-Predicted Li-Ion Battery Charge System,” IEEE Trans. on Industrial Electronics, vol. 55, no. 10, pp.3692-3701, Oct. 2008.
[20] L. R. Chen, “PLL-based battery charge circuit topology,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp.1344-1346, Dec. 2004.
[21] L. R. Chen, C. S. Liu, and J. J. Chen, “Improving Phase-Locked Battery Charger Speed by Using Resistance-Compensated Technique,” IEEE Trans. on Industrial Electronics, vol. 56, no. 4, pp.1205-1211, Apr. 2009.
[22] L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, “Current-Pumped Battery Charger,” IEEE Trans. on Industrial Electronics, vol. 55, no. 6, pp.2482-2488, Jun. 2008.
[23] K. M. Tsang and W.L. Chan, “Current sensorless quick charger for lithiumion batteries,” Energy Conversion and Management, vol. 52, no. 3, pp.1593-1595,Mar. 2011.
[24] P. H. L. Notten, J. H. G. Op het Veld, and J. R. G. van Beek, “Boostcharging Li-ion batteries: A challenging new charging concept”, Journal of power Source, vol. 145, no. 1, pp. 89-94, Feb 2005.
[25] P. Petchjatuporn, P. Sirisuk, N. Khaehintung, K. Sunat, P. Wicheanchote, and W. Kiranon, “Low cost RISC implementation of intelligent ultra fast charger for Ni–Cd battery,” Energy Conversion and Management, vol. 49, no. 2, pp. 185–192, Feb. 2008.
[26] B. Y. Chen and Y. S. Lai, “New Digital-Controlled Technique for Battery Charger With Constant Current and Voltage Control Without Current Feedback,” IEEE Trans. on Industrial Electronics, vol. 59, no. 3, pp.1545-1553, Mar. 2012.
[27] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger,” IEEE Trans. on Power Electronics, vol. 27, no. 8, pp.3782-3794, Aug. 2012.
[28] L. R. Chen, “A Design of an Optimal Battery Pulse Charge System by Frequency-Varied Technique,” IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp.398-405, Feb. 2007.
[29] L. R. Chen, “Design of Duty-Varied Voltage Pulse Charger for Improving Li-Ion Battery-Charging Response,” IEEE Trans. on Industrial Electronics, vol. 56, no. 2, pp.480-487, Feb. 2009.
[30] L. R. Chen, S. L. Wu, D. T. Shieh, and T. R. Chen, “Sinusoidal-Ripple-Current Charging Strategy and Optimal Charging Frequency Study for Li-Ion Batteries,” IEEE Trans. on Industrial Electronics, vol. 60, no. 1, pp.88-97, Jan. 2013.
[31] L. R. Chen, J. J. Chen, C. M. Ho, S. L. Wu, and D. T. Shieh, “Improvement of Li-ion Battery Discharging Performance by Pulse and Sinusoidal Current Strategies,” IEEE Trans. on Industrial Electronics, vol. 60, pp5620-5628, Dec. 2013.
[32] B. K. Purushothama, P. W. Morrison, Jr., and U. Landau, “Reducing mass-transport limitations by application of special pulsed current modes, ” Journal of The Electrochemical Society, vol. 152, no. 4, pp. J33-J39,Mar. 2005.
[33] B. K. Purushothama and U. Landau, “Rapid charging of Lithium-ion batteries using pulsed current, ” Journal of The Electrochemical Society, vol. 153, no. 3, pp. A533-A542,Jan. 2006.
[34] Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm,” IEEE Trans. on Industrial Electronics, vol. 52, no. 5, pp.1328-1336, Oct. 2005.
[35] Y. H. Liu and Y. F. Luo, “Search for an Optimal Rapid-Charging Pattern for Li-Ion Batteries Using the Taguchi Approach,” IEEE Trans. on Industrial Electronics, vol. 57, no. 12, pp.3963-3971, Dec. 2010.
[36] Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an Optimal Five-Step Charging Pattern for Li-Ion Batteries Using Consecutive Orthogonal Arrays,” IEEE Trans. on Energy Conversion, vol. 26, no. 2, pp.654-661, June. 2011.
[37] L. R. Dung and J. H. Yen, “ILP-Based Algorithm for Lithium-Ion Battery Charging Profile,” IEEE International Symposium on, pp.2286-2291, July. 2010.
[38] J. W. Huang, Y. H. Liu, S. C. Wang, and Z. Z. Yang, “Fuzzy-control-based five-step Li-ion battery charger,” IEEE Int. Conf. Power Electronics and Drive Systems, 2009, pp. 1547–1551.
[39] S. C. Wang and Y. H. Liu, “A Modified PI-Like Fuzzy Logic Controller for Switched Reluctance Motor Drives,” IEEE Trans. on Industrial Electronics, vol. 58, no. 5, pp.1812-1825, May. 2011.
[40] F. Taeed, Z. Salam, and S. M. Ayob, “FPGA Implementation of a Single-Input Fuzzy Logic Controller for Boost Converter With the Absence of an External Analog-to-Digital Converter,” IEEE Trans. on Industrial Electronics, vol. 59, no. 2, pp.1208-1217, Feb. 2012.
[41] C. Xu and Yung C. Shin, “A Multilevel Fuzzy Control Design for a Class of Multiinput Single-Output Systems,” IEEE Trans. on Industrial Electronics, vol. 59, no. 8, pp.3113-3123, Aug. 2012.
[42] A. A. Nabulsi and R. Dhaouadi, “Efficiency Optimization of a DSP-Based Standalone PV System Using Fuzzy Logic and Dual-MPPT Control,” IEEE Trans. on Industrial Electronics, vol. 8, no. 3, pp.573-584, Aug. 2012.
[43] S. Li and H. Gu, “Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System,” IEEE Trans. on Industrial Informatics, vol. 8, no. 4, pp.767-779, Nov. 2012.
[44] P. J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, New York: McGraw-Hill, 1996.
[45] D. Liu and Ying Cai, “Taguchi method for solving the economic dispatch Problem with nonsmooth cost functions,” IEEE Trans. on Power Systems, vol. 20, no. 4, pp. 2006–2014, Nov. 2005.
[46] Y. T. Liu, R. F. Fung, and C. C. Wang, “Application of the nonlinear, double-dynamic Taguchi method to the precision positioning device using combined piezo-VCM actuator,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 240–250, Feb. 2007.
[47] W. C. Weng, F. Yang, and A. Z. Elsherbeni, “Linear antenna array synthesis using Taguchi’s method: a novel optimization technique in electromagnetics,” IEEE Trans. on Antennas and Propagation, vol. 55, no. 3, pp. 723–730, Mar. 2007.
[48] K. Y. Chan, S. Khadem, T. S. Dillon, V. Palade, J. Singh, and E. Chang, “Selection of Significant On-Road Sensor Data for Short-Term Traffic Flow Forecasting Using the Taguchi Method,” IEEE Trans. on Industrial Informatics, vol. 8, no. 2, pp.255-266, May. 2012
[49] H. H. Rivera, J. S. Leal, and A. V. Chavez, “Improving a soldering process applying the dual response approach to a Taguchi's orthogonal array,” Int. Conf. Computers & Industrial, pp. 1174-1178, July 2009.
[50] Y. P. Chang, C. Low, and C. J. Wu, “Optimal design of discrete-value passive harmonic filters using sequential neural-network approximation and orthogonal array,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1813–1821, July 2007.
[51] L. M. Moore, M. D. McKay, and K.S. Campbell, “Combined array experiment design,” Reliability Engineering & System Safety, vol. 91, no. 10-11, pp. 1281–1289 Oct.-Nov. 2006.
[52] C. C. Chou, N. M. Liu, and J. T. Horng et al, “Designing parameter optimization of a Parallel-Plain Fin heat sink using the grey-based fuzzy algorithm with the orthogonal arrays,” International Journal of Thermal Sciences, vol. 48, no. 2, pp. 2271–2279 Dec. 2009.
[53] H. R. Choi and G. H. Choe, “A Multiobjective Parametric Optimization for Passenger-Car Steering Actuator,” IEEE Trans. on Industrial Electronics, vol. 57, no. 3, pp.900-908, Mar. 2010.
[54] Y. S. Tarng, W. H. Yang, and S. C. Juang, “The Use of Fuzzy Logic in the Taguchi Method for the Optimisation of the Submerged Arc Welding Process,” Int. J. of Advanced Manufacturing Technology, vol. 16, no. 9, pp. 688–694, Jun. 2000.
[55] A. K. Pandey and A. K. Dubey, “Taguchi based fuzzy logic optimization of multiple quality characteristics in laser cutting of Duralumin sheet,” J. Optics and Lasers in Engineering, vol. 50, no. 3, pp. 328–335, Mar. 2012.
[56] 朱順益,「鋰電池快速充電波形設計」,義守大學電機工程研究所論文,民國九十三年六月。
[57] 李孜賾,「以模糊控制為基礎之五階段鋰電池充電機」,國立台灣科技大學電機工程系碩士學位論文,民國九十八年六月。
[58] 羅一峰,「鋰離子電池最佳化充電技術之研究」,國立台灣科技大學電機工程系博士學位論文,民國九十九年六月。
[59] 吳敏旭,「串聯電池組電池管理系統之開發」,長庚大學電機工程研究所論文,民國九十三年五月。
[60] 李嘉猷,「應用DSP於電動車充電站快充控制系統之研究」,國立成功大學電機工程系碩士學位論文,民國九十年六月。
[61] 屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
[62] 林季鋒,「應用模糊控覺於正負脈衝充電法之快速充電器」,國立中央大學電機工程系碩士學位論文,民國九十一年六月。
[63] 趙介雷,「鋰電池特性之研究與其充電器之設計」,大葉大學電機工程系碩士學位論文,民國九十三年六月。
[64] 建國理工生科所,「行動式電子產品的心臟-二次電池(一)」,http://www.getgoal.com.tw/tech/tech.htm。
[65] H. J. Chiu, L. W. Lin, P. L. Pan, and M. H. Tseng, “A novel rapid charger for lead-acid batteries with energy recovery,” IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 640–647, May 2006.
[66] J. B. Wang and C.Y. Chuang, “Design considerations of microprocessor-controlled multiphase battery charger with fast-charging strategy,” IET on Electric Power Applications, vol. 1, no. 2, pp. 143–152, Mar. 2007.
[67] C. H. Lin, C. L. Chen, Y. H. Lee, S. J. Wang, C. Y. Hsieh, H. W. Huang, and K. H. Chen, “Fast charging technique for Li-ion battery charger,” Proc. of IEEE Electronics, Circuits and Systems International Conference, pp. 618 – 621, Sep. 2008.
[68] V. Svoboda, H. Doering, and J. Garche, “The influence of fast charging on the performance of VRLA batteries,” J. Power Sources, vol. 144, no. 1, pp. 244–254, Jun. 2005.
[69] M. James, J. Grummett, and M. Rowan et al, “Application of pulse charging techniques to submarine lead-acid batteries,” J. Power Sources, vol. 162, no. 2, pp. 878–883, Nov. 2006.
[70] T. Ikeyaa, N. Sawadab, and J. I. Murakamic, “Multi-step constant-current charging method for an electric vehicle nickel/metal hydride battery with high-energy efficiency and long cycle life,” J. Power Sources, vol. 105, no. 1, pp. 6–12, Jan. 2002.
[71] J. H. Yan, H.Y. Chena, and W.S. Li et al., “A study on quick charging method,” J. Power Sources, vol. 158, no. 2, pp. 1047–1053, Aug. 2006.
[72] 劉彥余,「最佳化鋰電池充電法則研究與充電電路之實現」,國立台灣科技大學電機工程系碩士學位論文,民國九十七年一月。
[73] 李輝煌,「田口方法:品質設計的原理與實務」,高立圖書有限公司,2000年。
[74] 王文俊,「認識Fuzzy」第二版,全華科技圖書,民國92年10月。
[75] 李允中、王小璠、蘇木春,「模糊理論及其應用」,全華科技圖書,民國93年2月。
[76] 王進德、蕭大全,「類神經網路與模糊控制理論入門」,全華科技圖書,民國92年9月。
[77] M. A. S. Masoum and M. Sarvi, “Design, Simulation and Construction of a New Fuzzy-Based Maximum Power Point Tracker for Photovoltaic Applications,” 2002.
[78] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-Controlled Li-ion Battery Charge System with Active State-of-Charge Controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 585-593, June 2001.
[79] 孫宗瀛、楊英魁,「Fuzzy 控制理論、實作與應用」,全華科技圖書股份有限公司,民國89 年出版。
[80] E. L. Chan, N. A. Rahim, and S. Mekhilef, “DSP-Based Fuzzy Logic Controller for a Battery Charger,” Proc. of IEEE Computers, Communications, Control and Power Engineering Conference, vol. 3, pp. 1512-1515, Oct. 2002.
[81] C. Zhang and D. Zhao, “MPPT with asymmetric fuzzy control for photovoltaic system,” Industrial Electronics and Applications, ICIEA IEEE Conf., pp. 2180-2183, 2009.
[82] N. Patcharaprakiti and S. Premrudeepreechacharn, “Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid connected Photovoltaic System”, PESW2002, vol. 1, pp. 372-377, 2002.
[83] 蕭子建、王智昱、儲昭偉,「LabVIEW進階篇」,高立圖書,民國八十九年五月。
[84] 蕭子建、王智昱、儲昭偉,「虛擬儀控程式設計-LabVIEW7X」,高立圖書,民國九十三年三月。
[85] 陸中光、蕭子建,「LabVIEW & Microsoft 的整合實例(I)」,高立圖書,民國九十三年十二月。
[86] C. S. Moo, H. C. Yen, C. R. Lee, and I. S. Tsai, “Designing LC filters by consecutive orthogonal arrays,” IEE Proceedings on Electric Power Applications, vol. 150, no. 5, pp. 569–574, Sep. 2003.
[87] R. K. Roy, “Design of experiments using the Taguchi approach,” John Wiley & Sons, Inc., 2001.
[88] P. J. Ross, “Taguchi techniques for quality engineering,” McGraw-Hill, Inc., 1988.
[89] C. L. Liu, Y. S. Chiu , Y. H. Liu, Y. H. Ho , and S. S. Huang, “Optimization of a Fuzzy-Logic-Control-Based Five-Stage Battery Charger Using a Fuzzy-Based Taguchi Method,” Energys, vol. 6, no. 7, pp. 3528–3547, Jul. 2013.
[90] C. F. Juang, C. M. Lu, C. Lo, and C. Y. Wang, “Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation,” IEEE Trans. on Industrial Electronics, vol. 55, no. 3, pp. 1453–1462, Mar. 2008.
[91] F. Tao, D. Zhao, Y. Hu, and Z. Zhou, “Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system,” IEEE Trans. on Industrial Electronics, vol. 4, no. 4, pp. 315–327, Nov. 2008.
[92] B. Biswal, P. K. Dash, and B. K. Panigrahi, “Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization,” IEEE Trans. on Industrial Electronics, vol. 56, no. 1, pp. 212–220, Jan. 2009.
[93] K. Sundareswaran and V. T. Sreedevi, “Boost converter controller design using queen-bee-assisted GA,” IEEE Trans. on Industrial Electronics, vol. 56, no. 3, pp. 778–783, Mar. 2009.

無法下載圖示 全文公開日期 2019/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE