簡易檢索 / 詳目顯示

研究生: 張峰筌
Feng-Chuan Chang
論文名稱: 液態電漿氧化處理對Ti-6Al-4V鈦合金之微結構與機械性質影響研究
Microstructural and mechanical properties evaluation of oxide layer grown by plasma electrolytic oxidation
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 李志偉
Jyh-Wei Lee
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 137
中文關鍵詞: 液態電漿氧化Ti-6Al-4V二硫化鉬氮化矽鈦酸鋁刮痕測試磨耗測試
外文關鍵詞: plasma electrolytic oxidation, Ti-6Al-4V, MoS2, Si3N4, tialite, scratch test, pin-on-ball wear test
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用脈衝直流電源在Ti-6Al-4V表面進行液態電漿氧化實驗,並使用兩種電解液。在磷酸系列的製程探討控制佔空比(duty cycle)與電解液中添加MoS2奈米顆粒的方式,來製備不同參數的液態電漿氧化層,以定電流2.5 A,且最高電壓400 V的參數進行操作,觀察佔空比與奈米顆粒對於氧化層性質影響。在偏鋁酸系列的製程則是固定50%佔空比以定電流1.2 A,且最高電壓450 V,改變Si3N4奈米顆粒的添加量,其中部分參數使用十二烷基硫酸鈉(sodium lauryl sulfate, SDS)作為奈米顆粒表面分散劑,觀察Si3N4奈米顆粒與十二烷基硫酸鈉(sodium lauryl sulfate, SDS)對於氧化層性質的影響。利用X光繞射儀確認氧化層的晶體結構,並使用掃描式電子顯微鏡/能量散佈光譜儀分析氧化膜的成份,觀察氧化層的表面與截面之顯微結構。藉由奈米硬度機測量氧化層的硬度以及表面輪廓儀測量表面粗糙度。各液態電漿氧化技術製備氧化層再進行附著性試驗、耐磨耗試驗與腐蝕實驗分析。


In this work, a pulsed DC power supply is employed to fabricate the PEO oxide layer on the Ti-6Al-4V alloy. Our experimental procedure is divided into the two PEO processes. The first PEO process is kept for 20 min at a constant current of 2.5 A. A maximum voltage of 400 V is set for PEO process. The MoS2 particles with concentrations of 4 g/L are added into the electrolyte. Three duty cycles, 20%, 35%, and 50%, are selected and the frequency is fixed at 1000 Hz during PEO process. In addition, the second PEO process is kept for 10 min at a constant current of 1.2 A. A maximum voltage of 450 V is set for PEO process. The duty cycle of 50% is selected and the frequency was fixed at 1000 Hz. Besides, the ethanol is adopted to play a role of the dispersant agent and the Si3N4 particles with different concentrations from 1 to 6 g/L are added into the electrolyte. The SDS additive is added at a fraction of samples to modify the Si3N4 particles. The structures of PEO coating is determined by the X-ray diffractometer (XRD). The surface and the cross-section of the PEO coatings are examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The HRC-DB test and scratch test are used to evaluate the adhesion quality of the coating. The surface roughness is examined by a profilometer. Furthermore, the coefficient of friction of the coatings is measured using a pin-on-disk wear tester to investigate the wear resistance of coatings against the 5 mm diameter high Cr steel ball. The corrosion resistance of the PEO coatings are evaluated by the potentiodynamic polarization test in 5 wt.% NaCl solution.

目錄 摘要 …………………………………………………………………………………...I ABSRACT ………………………………………………………….………………...II 致謝………………………………………………………………….…………..…...IV 目錄…………………………………………………………….……………………..V 圖目錄…………………………………………………………………………...…VIII 表目錄……………………………………………………………………...………XIV 第一章 緒論 …………………………………………………………………………1 1.1 前言 …………………………………………………………………………….1 1.2 研究動機及目的 ……………………………………………………………….2 第二章 文獻回顧……………………………………………………………………..3 2.1 液態電漿氧化技術…………………………………….….…………………….3 2.1.1 發展背景介紹………………………………………...…...…………………3 2.1.2 液態電漿氧化原理…………………………………………………………..4 2.2 放電種類……………………………………………………………..………….9 2.3 液態電漿隨時間變化過程…………………………………………………….12 2.3.1 電漿隨時間之變化……………………………………………...………….12 2.3.2 液態電漿氧化放電隨時間之變化…………………………..……………..14 2.4 液態電漿氧化層的結構……………………………………………………….16 2.5 液態電漿氧化電解液之選擇與影響………………………….………………17 2.6 液態電漿氧化電解液添加粉末之影響……………………………………….20 2.7 以陰離子界面活性劑使粉末改質方法……………………...………………..21 2.8 液態電漿氧化技術之文獻參數比較………………...………….…………….23 2.9 電化學腐蝕極化分析………………………………………………………….25 2.9.1 電化學檢測…………………………………………………………………25 2.9.2 極化阻抗……………………………………………………………………26 2.9.3 Tafel曲線外插法……………………………………………………………27 第三章 實驗方法與步驟……………………………………………………………31 3.1 實驗流程………………………………………………..……………………...31 3.2 實驗方法與步驟……………………………………….………………………34 3.2.1 試片製備…………………………………………...……………………….34 3.2.2 液態電漿氧化製程實驗……………………………………………………34 3.3 實驗參數…………………………………………….…………………………35 3.4 膜層性質分析……………………………………….…………………………37 3.4.1 晶體結構分析………………………………………..……………………..37 3.4.2 化學成分分析………………………………………………………………38 3.4.3 表面與截面形貌之分析……………………………………………………39 3.4.4 硬度試驗…………………………………………..………………………..41 3.4.5 附著性分析………………………………………..………………………..43 3.4.5.1 HRC-DB test 壓痕試驗法…………………...………………………….43 3.4.5.2 Micro Vickers hardness test 壓痕試驗法…..…………………………...44 3.4.5.3 刮痕試驗…………………………………...……………………………46 3.4.6 磨耗試驗……………………………………………………………………47 3.4.7 電化學腐蝕試驗……………………………………………………………48 第四章 結果與討論…………………………………………………………………50 4.1 以磷酸鉀製備液態電漿氧化層……………………………………………….50 4.1.1 電壓與電流時間關係………………………………………………………50 4.1.2 晶體結構分析與化學成分組成分析……………..………………………..52 4.1.3 微觀結構分析………………………………………………………………54 4.1.4 奈米硬度分析……………………………………...……………………….60 4.1.5 附著性分析…………………………………………………………………61 4.1.6 磨耗分析……………………………………………………………………65 4.1.7 抗腐蝕能力分析…………………………..………………………………..70 4.2 以偏鋁酸鈉製備液態電漿氧化層……………….…........................................72 4.2.1 晶體結構分析與化學組成分析……………………………………………72 4.2.2 微觀結構分析……………………………...……………………………….77 4.2.3 奈米硬度分析………….……………………...……………………………92 4.2.4 附著性分析…….…………………………...…...………………………….87 4.2.5 磨耗分析………………………………………………...……….………...101 4.2.6 抗腐蝕能力分析…………………………………………...…….………...106 第五章 結論……………………………………………………………….………..108 參考文獻…………………………………………………………………….………110

參考文獻
[1] F.L. Liu, J.G. Li, and Z.X. Feng, Evolution of surface technologies for titanium alloys, Corrosion and Protection, 22 (2001) 54–57.
[2] S.W. Jiang, B. Jiang, Y. Li, Y.R. Li, G.F. Yin, and C.Q. Zheng, Friction and wear behavior of DLC gradient film on Ti6Al4V alloy substrate in sliding against ultra-high molecular weight polyethylene, Applied Surface Science, 236 (2004) 285–291.
[3] Q. Li, J. Liang and Q. Wang, Plasma Electrolytic Oxidation Coatings on Lightweight Metals, Modern Surface Engineering Treatments, (2015).
[4] M. Aliofkhazraei, A.S. Rouhaghdam, and T. Shahrabi, Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation, Surface and Coatings Technology, 205 (2010) 41-46.
[5] M Aliofkhazraei and A. Rouhaghdam, Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle, Applied Surface Science, 258 (2012) 2093–2097.
[6] K.M. Lee, K.R. Shin, S. Namgung, B. Yoo, and D.H. Shin, Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation, Surface & Coatings Technology, 205 (2011) 3779–3784.
[7] M. Mu, J. Liang, X. Zhou, and Q. Xiao, One-step preparation of TiO2/MoS2 composite coating on Ti6Al4V alloy by plasma electrolytic oxidation and its tribological properties, Surface and Coatings Technology, 214 (2013) 124–130.
[8] X. Wu, W. Qin, Y. Guo, and Z. Xie, Self-lubricative coating grown by micro-plasma oxidation on aluminum alloys in the solution of aluminate–graphite, Applied Surface Science, 254 (2008) 6395–6399.
[9] S. Hariprasad, M. Ashfaq, and T. Arunnellaiappan, Role of electrolyte additives on in-vitro corrosion behavior of DC plasma electrolytic oxidization coatings formed on Cp-Ti, Surface & Coatings Technology, 292 (2016) 20–29.
[10] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol., 122 (1999) 73–93.
[11] G. Sundararajan and L.R. Krishna, Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology, Surf. Coat. Technol., 167 (2003) 269–277.
[12] B. Rahmati and D. Sarhan, Development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility, Ceramics International, 42 (2016) 466-480.
[13] M. N. Mokgalaka, A. P. I. Popoola, and S.L. Pityana, In situ laser deposition of NiTi intermetallics for corrosion improvement of Ti–6Al–4V alloy, Transactions of Nonferrous Metals Society of China, 25 (2015) 3315-3322.
[14] X. Zeng, T. Yamaguchi, and K. Nishio, Surface nitrocarburizing of Ti-6Al-4V alloy by YAG laser irradiation, Surface and Coatings Technology, 262 (2015) 1-8.
[15] V.C. Gudla, K. Bordo, F. Jensen, S. Canulescu, S. Yuksel, A. Simar, and R. Ambat, High frequency anodising of aluminium–TiO2 surface composites: Anodising behaviour and optical appearance, Surface & Coatings Technology, 277 (2015) 67-73.
[16] A.K. Kęsik, G. Dercz, I. Kalemba, J. Michalska, J. Piotrowski, and W. Simka, Surface treatment of a Ti-6Al-7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Archives of Civil and Mechanical Engineering, 14 (2014) 671-681.
[17] S. Sarbishei, M.A.F. Sani, and M.R. Mohammadi, Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension, Vacuum, 108 (2014) 12-19.
[18] K.R. Shin, Y.S. Kim, G.W. Kim, H.W. Yang, Y.G. Ko, and D.H. Shin, Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation, Applied Surface Science, 347 (2015) 574-582.
[19] A.L. Yerokhin, X. Nie, A. Leyland, and A. Matthews, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surf. Coat. Technol., 130 (2000) 195–206.
[20] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, and J.Y. Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 25 (2004) 2867–2875.
[21] W. Xue, Q. Zhu, Q. Jin, and M. Hua, Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte, Materials Chemistry and Physics, 120 (2010) 656-660.
[22] B.L. Jiang and Y.M. Wang, Plasma electrolytic oxidation treatment of aluminum and titanium alloys, Surface Engineering of Light Alloys, (2010) 110-154.
[23] W.M. Latimer, Oxidation potentials, soil science, 74 (1952) 333.
[24] Z.J. Jia, M. Li, Q. Liu, X.C. Xu, Y. Cheng, Y.F. Zhenga, T.F. Xi, and S.C. Wei, Micro-arc oxidization of a novel Mg-1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity, Applied Surface science, 292 (2014) 1030-1039.
[25] S. Shrestha and B.D. Dunn, Plasma electrolytic oxidation and anodising of aluminum alloys for spacecraft applications, Surface Engineering of Light Alloys, (2010) 603-641.
[26] L. Zhu, Z. Guo, Y. Zhang, Z. Li, and M. Sui, A mechanism for the growth of a plasma electrolytic oxide coating on Al, Electrochimica Acta, 208 (2016) 296-303.
[27] B.L. KRIT, text book-Microarc Discharge Oxidizing (MDO), Russian State, Technological University-Technologies of Materials Treatment by High Energy Flows Department.
[28] í. Koller, László, Novák, Balázs, é. Tamus, and Ádám, Electrical switching devices and insulators, XMLmind XSL-FO Converter, (2012) 50-56.
[29] B. L. Jiang and Y.F. Ge, Micro-arc oxidation (MAO) to improve the corrosion resistance of magnesium (Mg) alloys, Woodhead Publishing Limited, (2013) 163-192.
[30] V.I. Tchernenko, L.A. Snezhko, and I.I. Papanova, Coatings by Anodic Spark Electrolysis, Khimiya, 68 (1991) 568-573.
[31] Xijin Li and Ben Li Luan, Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy, Materials Letters, 86 (2012) 88-91.
[32] M.S. Muhamad, M.R. Salim, and W.J. Lauc, Surface modification of SiO2 nanoparticles and its impact on the properties of PES-based hollow fiber membrane, RSC Advances, 72 (2015) 58644-58654.
[33] S. Li, W. Yao, J. Liu, M. Yu, L. Wu, and K. Ma, Study on anodic oxidation process and property of composite film formed on Ti–10V–2Fe–3Al alloy in SiC nanoparticle suspension, Surface and Coatings Technology, 277 (2015) 234–241.
[34] A.L. Yerokhin, X. Nie, A. Leyland, and A. Matthews, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surface and Coatings Technology, 130 (2000) 195-206.
[35] Y.M. Wang, B.L. Jiang, T.Q. Lei, and L.X. Guo, Micro-arc oxidation coatings formed on Ti-6Al-4V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties, Surface & Coatings Technology, 201 (2006) 82–89.
[36] S. Wang, Q. Zhao, D. Liu, and N. Du, Microstructure and elevated temperature tribological behavior of TiO2/Al2O3 composite ceramic coating formed by microarc oxidation of Ti-6Al-4V alloy, Surface & Coatings Technology, 272 (2015) 343–349.
[37] M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance, Applied Surface Science, 258 (2012) 2416–2423.
[38] Y. Wang, T. Lei, B. Jiang, and L. Guo, Growth, microstructure and mechanical properties of micro-arc oxidation coatings on titanium alloy in phosphate-containing solution, Applied Surface Science, 233 (2004) 258–267.
[39] Y.M. Wang, P.F. Zhang, L.X. Guo, J.H. Ouyang, Y. Zhou, and D.C. Jia, Effect of microarc oxidation coating on fatigue performance of Ti–Al–Zr alloy, Applied Surface Science, 255 (2009) 8616–8623.
[40] Y. Wang, T. Lei, L. Guo, and B. Jiang, Fretting wear behaviour of microarc oxidation coatings formed on titanium alloy against steel in unlubrication and oil lubrication, Applied Surface Science, 252 (2006) 8113–8120.
[41] 熊楚強, 王月, 電化學 (electrochemistry), 新文京開發出版有限公司
[42] B. N. Popov, Corrosion Engineering Principles and Solved Problems, Elsevier, (2015) 181-237.
[43] H. Jehn, G. Reiners, and N. Siegel, DIN Fachbericht 39, Characterisierung dinner Schichten, (1993) 213.
[44] M. Odén, C. Ericsson, G. Hakansson, and H. Ljunerantz, Microstructure and mechanical behavior of arc-evaporated Cr-N coatings, Surf. Coat. Technol., 114 (1999) 39-51.
[45] O.S. Heavens, Some factors influencing the adhesion of films produced by vacuum evaporation, J. Phys. Radium, 11 (1950) 355-360.
[46] P. Benjamin and C. Weaver, Measurement of Adhesion of Thin Films, Proceedings of the Royal Society, 254 (1960) 163-176.
[47] S.J. Bull, Failure mode maps in the thin film scratch adhesion test, Tribology International, 30 (1997) 491-498.
[48] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, and S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surface & Coatings Technology, 194 (2005) 143–148.
[49] 李曉宗,超硬保護膜之抗腐蝕研究,碩士論文,國立中央大學光電科學研究所, (2000)
[50] V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, and S. Rohani, Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surf. Coat. Technol., 226 (2013) 100–107.
[51] K.M. Lee, K.R. Shin, S. Namgung, B. Yoo and D.H. Shin, Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation, Surf. Coat. Technol., 205 (2011) 3779–3784.
[52] Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei, and B.L. Jiang, Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy, Mater. Chem. Phys., 90 (2005) 128–133.
[53] M.R. Bayati, A.Z.Moshfegh, and F. Golestani-Fard, Effect of electrical parameters on morphology, chemical composition, and photoactivity of the nano-porous titania layers synthesized by pulse-microarc oxidation, Electrochim. Acta, 55 (2010) 2760–2766.
[54] V. Dehnavi, D.W. Shoesmith, B.L. Luan, M. Yari, X.Y. Liu, and S. Rohani, Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy The effect of the PEO process stage, Materials Chemistry and Physics, 161 (2015) 49-58.
[55] Y.M. Wang, B.L. Jiang, T.Q. Lei, and L.X. Guo, Microarc oxidation coatings formed on Ti-6Al-4V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties, Surface & Coatings Technology, 201 (2006) 82–89.
[56] M. Keshavarz, M.H. Idris, and N. Ahmad, Mechanical properties of stabilized zirconia nanocrystalline EB-PVD coating evaluated by micro and nano indentation mechanical properties of stabilized zirconia nanocrystalline EB-PVD coating evaluated by micro and nano indentation, J. Adv. Ceram., 2 (2013) 333–340.
[57] R. Aksoy, Y. Ma, E. Selvi, M.C. Chyu, A. Ertas, and A. White, X-ray diffraction study of molybdenum disulfide to 38.8 GPa, Journal of Physics and Chemistry of Solids, 67 (2006) 1914–1917.
[58] Y. Wang, T. Lei, L. Guo, and B. Jiang, Fretting wear behaviour of microarc oxidation coatings formed on titanium alloy against steel in unlubrication and oil lubrication, Appl.Surf. Sci., 252 (2006) 8113–8120.
[59] L. White, Y. Koo, S. Neralla, J. Sankar, and Y. Yun, Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation(PEO), Materials Science and Engineering B, 208 (2016) 39–46.
[60] K. Tillous, T. Toll-Duchanoy, E. Bauer-Grosse, L. Hericher, and G. Geandier, Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T74, Surface & Coatings Technology, 203 (2009) 2969-2973.
[61] R.O. Hussein, X. Nie, and D.O. Northwood, spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation, Materials Chemistry and Physics, 134 (2012) 484-492.
[62] X.L. Zhang, H. Jiang, P. Yao, and Z.D. Wu, Electrochemical study of growth behaviour of plasma electrolytic oxidation coating on Ti6Al4V: Effects of the additive, Corrosion Science, 52 (2010) 3465-3473.
[63] J.M. Wheeler, C.A. Collier, J.M. Paillard, and J.A. Curran, Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti-6Al-4V, Surface & Coatings Technology, 204 (2010) 3399-3409.
[64] H.N. Vatan, R.E. kahrizsangi, and M.K. asgarani, Structural, tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation (PEO) on AZ31 magnesium alloy, Journal of Alloys and Compounds, 683 (2016) 241-255.
[65] L. Yu, J. Cao, and Y. Cheng, An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate–hexametaphosphate electrolyte with the suspension of SiC nanoparticles, Surface & Coatings Technology, 276 (2015) 266-278.
[66] W. Xue, C. Wang, R. Chen, and Z. Deng, Structure and properties characterization of ceramic coatings produced on Ti–6Al–4V alloy by microarc oxidation in aluminate solution, Materials Letters, 52 (2002) 435–441.

無法下載圖示 全文公開日期 2021/07/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE