簡易檢索 / 詳目顯示

研究生: 陳建銓
Jian-Quan chen
論文名稱: 具帶拒功能的平面耦合超寬頻偶極天線陣列
A Coupled Planar Dipole UWB Antenna Array with an ISM Band-Notched Function
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 張勝良
Sheng-Lyang Jang
陳國龍
none
劉榮宜
none
徐敬文
Ching-Wen Hsue
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 98
中文關鍵詞: 超寬頻天線帶拒陣列
外文關鍵詞: array, band-notched, UWB antenna
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

許多技術像是Wi-Fi、藍芽等都可以說是為了解決數位家電的無線個人區域網路而生,其中最強勁的對手就是超寬頻天線(UWB) ,此技術在頻寬、成本、功率、消耗以及下一代消費型電子產品大小上的需求都有很好的表現,因此UWB天線的設計就變的非常重要。
在本文中探討應用於超寬頻(UWB)偶極天線,超寬頻(UWB)偶極天線從3.1 GH到 10.6 GHz頻寬7.5 GHz。因為3.1 GHz到10.6 GHz的頻寬會覆蓋到IEEE802.11a (in the U.S. 5.15–5.35 GHz, 5.725–5.825 GHz) and HIPERLAN/2 (in Europe 5.15–5.35 GHz, 5.47–5.725 GHz) Wireless LAN的頻帶,有些方法可以濾掉這些Wireless LAN的頻帶,像是常見的在輻射體割個U型slot等,而我們則利用減短兩旁偶合輻射體來達到band notched 5 GHz 到6 GHz Wireless LAN的頻寬,我們也做了一些的參數分析及討論,以便了解參數如何達到band notched Wireless LAN。最後並設計成陣列形式。


Several wireless technologies such as Wi-Fi, Bluetooth, etc, have been proposed for WPAN for digital home. One of them, UWB, emergess as a strong rival in wireless world since it provides a compelling solution for bandwidth, cost, power consumption, and physical size requirements of next-generation consumer electronics devices. Therefore, the antenna design for UWB radio plays the most important rule in digital home topic.
In this thesis, we research dipole antennas used for UWB application which covers from 3.1 GHz to 10.6 GHz with a bandwidth of 7.5 GHz. UWB application also covers wireless LAN bands of IEEE802.11a (5.15–5.35 GHz and 5.725–5.825 GHz) in the U.S. and HIPERLAN/2 (5.15–5.35 GHz, 5.47–5.725 GHz) in Europe which we have to notch. There are some methods consisting of a U slot on the radiator to notch wireless LAN band. We achieve a notched frequency band between 5 GHz and 6 GHz by reducing coupled radiator the on the wnated band. We also analyze and discuss some parameters to implement wireless LAN band notch. We also design an antenna array in the end.

FIGURES AND TABLE CONTENTSVI CHAPTER 11 INTRODUCTION1 1.1MOTIVATION1 1.2OUTLINE OF THE THESIS6 CHAPTER 27 THEORETICAL ANALYSIS FOR DIPOLE ANTENNA7 2.1THE STRAIGHT WIRE ANTENNA7 2.2MATCHING TECHNIQUE12 2.2.1BINOMAL MULTISECTION TRANSMISSION15 2.3EQUIVALENT RADII OF WIRE DIPOLE19 2.4IMAGE THEORY20 2.5GROUND INTERFERENCE EFFECTS24 2.6TWO-DIMENSIONAL ARRAYS26 2.7THE BROADSIDE ARRAY CASE28 CHAPTER 333 THE THEORY OF UWB ANTENNA33 3.1BROADBAND BASIC33 3.2TRAVELING-WAVE ANTENNAS35 3.2.1INFINITE AND FINITE BI-CONICAL ANTENNAS35 3.3BOWTIE, TAPERED SLOT, AND VIVALDI ANTENNA40 3.4PRINCIPLES OF FREQUENCY-INDEPENDENT ANTENNA49 3.5ULTRA WIDE BAND ANTENNA52 3.5.1Design of Slot Loaded Band-Notched52 CHAPTER 460 ULTRA-WIDEBAND PRINTED COUPLE DIPOLE UWB ANTENNA WITH A BAND-NOTCHED60 4.1DESIGN METHOD AND REALIZATION60 4.2THE PRINTED BOW-TIE ANTENNA COMPARED WITH THE PRINTED DIPOLE ANTENNA64 4.3BAND-NOTCHED66 4.4MEASURED RESULTS75 4.5TWO ELEMENTS ARRAY DESIGN85 CHAPTER 592 CONCLUSION92 5.1SUMMARY92 5.2FUTURE WORKS94 REFERENCE:95 作者簡介98

[1]Federal Communications Commission, First report and order, revision of part 15 of the commission’s rule regarding ultra wideband transmission systems, FCC 02-48, Apr. 22, 2002.
[2]G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems”, IEEE Microwave vol. 4, pp. 36-47, jun. 2003.
[3]D. G. Leeper, “Ultra-wideband – the next step in short-range wireless,” in IEEE 2003 Radio Freq. Integrated Circuits Symp. Dig., pp. 493-496, Jun. 2003.
[4]R. W. P. King, ”The Linear Antenna-Eighty Years of Progress,” Proc. IEEE, Vol. 55, pp.2-16, Jan. 1967.
[5]R. W. P. King, The Theory of Linear Antennas, Harvard University Press, Cambridge, MA, 1956.
[6]R. W. P. King, Tables of Antenna Characteristics, Plenum, New York, 1961
[7]J. D. Kraus, R. J. Marhefka ”Antennas For All Application” McGraw-Hill Book Company, 2002, p 181.
[8]R. S. Elliott ”antenna theory and design ” Prentice-Hall, Inc., Englewood Cliffs, New Jersey, p 286.
[9]S. Drabowitch, A. Papiernik, H. Griffiths and J. Encinas ” Modern Antenna” Chapman & Hall, 1998.
[10]D. M. Pozar ” Microwave Engineering” University of Massachusetts at Amherst, John Wiley & Sons, INC, second edition, p258-266
[11]G. L. Matthaei, L. Young, and E. M. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House Books, Dedham, Mass. 1980.
[12]R. E. Collin ” Antennas and Radio wave Propagation” McGraw-Hill Book Company 1985
[13]W. L. Stutzman, Gary A. Thiele,”Antenna Theory and Design,” John Wiley & Sons, p165-174, p225-226, p240-p244, p250-p263, 1998.
[14]J. D. Kraus, R. J. Marhefka ,”Antenna For All Application,” McGraw-Hill Book Company, p378-p393, 2002.
[15]K. L. Wong and W. H. Hsu, ”Broadband triangular microstrip antenna with U-shaped slot, ”Electron. Lett., vol. 33, pp2085-2087, 1997.
[16]K. F. Tong, K. M. Luk, K. F. Lee, and R. Q. Lee,”A broad-band U-slot rectangular patch antenna on a microwave substrate,” IEEE Trans. On Ant. Prop., vol.AP-48, no.6, pp.954-960, Jun. 2000.
[17]P. J. Gibson, ”The Vivaldi aerial,” in Proc. 9th European Microwave Conf., Brighton, U.K., pp. 101-105, 1979,.
[18]S. N. Prasad and S. Mahapatra, “A novel mic slot line aerial,” in Proc. 9th European Microwave Conf., Brighton, U.K., pp. 120-124, 1979.
[19]T. L. Korzeniowski, D. M. Pozar, D. H. Schaubert, and K. S. Yngvesson, “Imaging system at 94 GHz using tapered slot antenna elements,” presented at the Eighth IEEE Int. Conf. Infrared and Millimeter Waves, Miami Beach, FL, 1983.
[20]K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johannson,“Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Propgat., vol. AP-33, pp. 1392-1400, Dec. 1985.
[21]R. Janaswamy and D. H. Schaubert, “Analysis of the tapered slot antenna,” IEEE Trans. Antennas Propagat., vol. AP-35, pp. 1058-1064, Sept. 1987
[22]R. Janaswamy, D. H. Schaubert, and D. M. Pozar, “Analysis of the TEM-mode linearly tapered slot antenna,” Radio Sci., vol. 21, no. 5, pp. 797-804, Sept.-Oct. 1986.
[23]R. Janaswamy and D. H. Schaubert, “Dispersion characteristics for wide slot lines on low permittivity substrates,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 723-726, Aug. 1985.
[24]“Characteristic impedance of a wide slot line on low permittivity substrates,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 900-902, Aug. 1986.
[25]J. Shin and D. H. Shaubert, “A parameter study of stripline-fed Vivaldi notch-antenna arrays,”IEEE Trans. Antennas Propagat., vol. 47, no. 5, pp. 879-886, May. 1999.
[26]P. R. Acharya, H. Ekstr m, S. S. Gearhart, S. Jacobsson, J. F. Johansson, E. L. Kollberg, and G. M. Rebeiz, “Tapered slotline antennas at 802 GHz,”IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1715-1719, Oct. 1993.
[27]D. H. Schaubert,“Wide-band phased arrays of Vivaldi notch antennas,”in Proc. 10th Inst. Elect. Eng. Int. Conf. Antennas Propagat., Edinburgh, U.K., pp. 12-16, Apr. 1997.
[28]B. Stockbroeckx and A. V. Vorst,“Copolar and cross-polar radiation of Vivaldi antenna on dielectric substrate,”IEEE Trans. Antennas Propagat., vol. 48, no. 1, Jan. 2000.
[29]B. Stockbroeckx and A. V. Vorst,“Electromagnetic modes in conical transmission line with application to linearly tapered slot antenna,”IEEE Trans. Antennas Propagat., to be published.
[30]T. Dissanayake and K. P. Esselle, “Design of Slot Loaded Band- Notched UWB Antennas”. IEEE, vol. 1B, pp. 545–548, Jul. 2005
[31]Warren L. Stutzman, Gary A. Thiele, “Antenna Theory and Design”, John Wiley & Sons, 1998 p165-174
[32]Kamya Yekeh Yazdandoost' and Ryuji Kohno“Bow-tie antenna for UWB communication frequency,” IEEE, 2004.
[33]C.D. Zhao, Analysis on the properties of a coupled planar dipole UWB antenna, Antennas Wireless Propag Lett 3 (2004), 317–320.
[34]H. G. Schantz, G. Wolenec, and E. M. Myszka, “Frequency notched UWB antennas,” in Proc. IEEE UWBST Conf. Present., 2003, pp.214–218.
[35]G.-Y. Chen and J.-S. Sun, “A printed dipole antenna with microstrip
tapered balun,” Microw. Opt. Tech. Lett., vol. 40, no. 4, pp. 344–346,Feb. 2004
[36]Abdelnasser A. Eldek “Pattern stability optimization for wideband microstrip antennas for phased arrays and power combiners,” Microwave and Optical Technology Letters 48 (8), pp. 1492-1494

無法下載圖示 全文公開日期 2012/08/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE