簡易檢索 / 詳目顯示

研究生: 蕭仲欽
Jung-chin Shiau
論文名稱: 無線生醫系統接收機之基頻電路設計
Design of Baseband Circuit for Wireless Receiver
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 施慶隆
Ching-Long Shih
姚嘉瑜
Chia-Yu Yao
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 99
中文關鍵詞: 生醫系統雙二階濾波器可變增益放大器無線接收機直流偏移校正迴路自動增益控制迴路
外文關鍵詞: Biomedical systems, Biquad filter, Variable gain amplifier, Wireless receiver, DC-offset calibration loop, Auto gain control loop
相關次數: 點閱:230下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著生物醫學技術的興起,可植入性生物醫學系統變成非常熱門的一項新興研究領域。在此研究中使用TSMC 0.18 um 1P6M CMOS製程,設計了兩個可應用於生醫通訊系統使用的無線接收機基頻電路。
    第一個電路設計做為可植入人體的體內接收機,因此設計著重在降低功率消耗,基頻電路具有56 dB的增益調整範圍,最高級最低增益分別為70 dB和14 dB,中頻操作頻率為20 kHz~100 kHz,後端的解調變電路使接收機可解調位振幅移鍵送訊號。由量測結果得知體內接收機整體功率消耗僅有319 uW,在資料傳輸速率1 kbps下接收靈敏度為-71 dBm (誤碼率 = 10-2),最大輸入功率超過5 dBm,晶片面積為1.2 mm2 (1.1 mm x 1.3 mm)。
    第二個電路做為體外接收機,用來接收體內發射機所送出的訊號,基頻電路提供500 kHz頻寬,可調增益範圍由20 dB至56 dB,接收機量測靈敏度為-65 dBm(誤碼率 = 10-2),消耗功率16.7 mW,晶片面積為1.2 mm2 (1.1 mm x 1.3 mm)。
    另外做了改善體外接收機基頻電路的設計,針對體外接收機直流偏移問題做改良,以混和訊號方式,利用逐次逼近法來調整放大器電流以達到校正偏移電壓的目的。電路還增加了自動增益控制的功能,可偵測輸入訊號強度調整電路增益,使輸出訊號適合下一級解調電路的振幅。增益調整範圍提升至72 dB,電路頻寬為400 kHz,由後模擬得到接收機靈敏度為-90 dBm,最大輸入功率超過-18 dBm,晶片消耗功率為27.2 mW,晶片面積為1.4 mm2 (1.17 mm x1.67 mm)。


    With the advancement of biomedical technology, implantable chip systems have become a new research topic. This thesis presents two designs of baseband circuits for wireless biomedical receiver applications under TSMC 0.18 um 1P6M CMOS process.
    The first circuit is designed as an implantable receiver which focuses on lowering the power consumption. The baseband circuit has a variable gain range of 56 dB with the highest and lowest gain of 70 dB and 14 dB respectively. The medium operating frequency is 20 kHz to 100 kHz. The demodulator at the back end can demodulate amplitude shift keying (ASK) signals. The implantable receiver has a power consumption of 319 uW, sensitivity of -71 dBm (BER≤ 10 -2) under 1 kbps data rate, maximum input power of 5 dBm, and a chip area of 1.2 mm2.
    The second circuit is designed as an external receiver outside the body to receive signals from the implantable transmitter. The baseband circuit provides a 500 kHz bandwidth, a variable gain ranging from 20 dB to 56 dB, sensitivity of -65 dBm (BER≤ 10 -2), power consumption of 16.7 mW, and a chip area of 1.2 mm2.
    In addition, improvements are made for the external receiver baseband circuit. In solving the DC offset problem, mixed signal method is utilized; successive approximation (SAR) is used to adjust the current of the amplifier in order to calibrate the DC offset. Furthermore, auto gain control function is added inside the circuit. The function can detect the input signal intensity and adjust the loop gain so that the output signal amplitude is suitable for the following stage demodulator circuit. The adjustable gain range is increased to 72 dB, the bandwidth of the circuit is 400 kHz. From the simulation results, the sensitivity of the receiver is -90 dBm, maximum input power of over -18 dBm, power consumption of 27.2 mW, and a chip area of 1.4 mm2.

    摘要 i Abstract iii 誌謝 v 目錄 vii 圖目錄 xi 表目錄 xvi 第一章 緒論 1 1.1研究動機 1 1.2研究方法 2 1.3章節概述 3 第二章 體內無線接收機之基頻電路設計 4 2.1簡介 4 2.2電路原理及架構 5 2.2.1-1運算轉導放大器 5 2.2.1-2共模回授電路 7 2.2.2-1可變增益放大器 8 2.2.2-2直流偏移 9 2.2.3差動單端轉換電路 10 2.2.4振幅位移鍵送解調變電路 11 2.2.5反相組態比較電路 12 2.3模擬結果 12 2.3.1-1運算轉導放大器模擬結果 12 2.3.1-2共模回授電路模擬結果 14 2.3.2可變增益放大器模擬結果 14 2.3.3差動單端轉換電路模擬結果 15 2.3.4基頻電路增益模擬結果 16 2.3.5接收機解調變模擬結果 17 2.4晶片佈局 19 2.5量測 21 2.5.1量測環境 21 2.5.2基頻電路增益量測 22 2.5.3接收機解調變有線量測 29 2.5.4收發機對傳量測 35 2.6改良型收發機測試板 40 2.6.1改良型收發機測試板量測 41 2.7電路規格表 43 第三章 體外無線接收機之基頻電路設計 44 3.1簡介 44 3.2電路原理及架構 45 3.2.1直流偏移消除迴路 45 3.2.2運算轉導放大器 46 3.2.3雙二階濾波器 47 3.2.4反相放大器 49 3.2.5源級隨偶器 49 3.2.6解調變電路及輸出級比較器 50 3.3模擬結果 50 3.3.1-1低通放大器使用之運算轉導放大器 50 3.3.1-2共模回授電路模擬結果 51 3.3.2-1伺服迴路使用之運算轉導放大器 52 3.3.2-2共模回授電路模擬結果 53 3.3.3源級隨偶器模擬結果 53 3.3.4雙二階濾波器模擬結果 55 3.3.5反相放大器模擬結果 56 3.3.6伺服迴路模擬結果 57 3.3.7基頻電路增益模擬結果 58 3.3.8體外接收機解調變模擬結果 59 3.4晶片佈局 60 3.5量測 62 3.5.1量測環境 62 3.5.2基頻電路增益量測 64 3.5.3接收機有線量測 67 3.6電路規格表 68 第四章 體外無線接收機基頻電路改良 69 4.1簡介 69 4.2電路原理與架構 70 4.2.1直流偏移校正迴路 70 4.2.1-2電壓比較器 71 4.2.1-3電流輸出數位類比轉換器 72 4.2.1-4直流偏移校正逐次暫存逼近器 73 4.2. 2自動增益控制迴路 75 4.2.2-1峰值偵測器 76 4.2.2-2電壓比較器 76 4.2.2-3自動增益控制逐次暫存逼近器 77 4.2.2-4增益調整模式控制開關 78 4.2.2-5寬擺幅固定轉導偏壓電路 79 4.3模擬結果 80 4.3.1時序控制器 80 4.3.2-1運算轉導放大器模擬結果 81 4.3.2-2共模回授電路模擬結果 82 4.3.3源極隨偶器模擬結果 82 4.3.4基頻電路增益模擬 83 4.3.5電壓比較器模擬 85 4.3.6直流偏移校正迴路模擬 86 4.3.7自動增益控制迴路模擬 87 4.3.8基頻電路穩定度模擬 85 4.3.9接收機解調變模擬 86 4.4晶片佈局 93 4.5電路規格表 94 第五章 未來展望 95 參考文獻 96 作者簡介 99

    [1] P. D. Bradley, “適用於植入性醫療應用的超低功耗RF 收發器”, 電子工程專輯,
    2006. http://www.eettaiwan.com/ART_8800442771_617723_TA_d0ffc134.HTM
    [2] X. Zou, X. Xu, L. Yao and Y. Lian, “ A 1-V 450-nW Fully Integrated
    Programmable Biomedical Sensor Interface Chip,” IEEE J.Solid-State
    Circuits, vol. 44, no. 4, pp. 1067 - 1077, Apr 2009.
    [3] A. Sivard, P. Bradley, P. Chadwick and H. Higgins, “人體通訊系統設計之挑戰
    與因應策略”, 電子工程專輯, 2006.
    http://www.eettaiwan.com/ART_8800452310_676964_NT_9b9473bc.HTM.
    [4] K. A. Ng and P. K. Chan, “A CMOS analog front-end IC for Portable EEG/ECG
    Monitoring Applications,” IEEE Trans. Circuits Syst. I, vol. 52, no. 11,
    pp. 2335 - 2347 , Nov 2005.
    [5] 陳俊谷,「RF Transceiver for Wireless Bio-Medical Network and Real-Time
    ECG Monitoring System Implementation」,國立暨南國際大學電機工程學系研究所
    碩士論文,2010。
    [6] V. Giannini, J. Craninckx, S. D’Amico, and A. Baschirotto, “ Flexible
    Baseband Analog Circuits for Software-Defined Radio Front-Ends,” IEEE J.
    Solid-State Circuits, vol. 42, no. 7, pp. 1501 – 1512, Jul 2007.
    [7] B. Razavi, “ Design of Analog COMS Integrated Circuit”, McGraw-Hill,
    2001 .
    [8] S. Franco , “Design with Operational Amplifiers and Analog Integrated
    Circuits”, McGraw-Hill, 2002.
    [9] 劉凱尹,「Analog Baseband for Multi-standard Application」,國立台灣大學
    電子工程系研究所碩士論文,2005。
    [10] 高慈徽,「Low Voltage Analog Baseband for WiMAX」,國立台灣大學電
    子工程系研究所碩士論文,2006。
    [11] H.Y. Shih, W.H. Chen, K.C. Juang, T.Y. Yang and C.N. Kuo, “A 1.2V
    Interference-Sturdiness, DC-Offset Calibrated CMOS Receiver Utilizing a
    Current-Mode Filter for UWB,” IEEE Asian Solid-State Circuits Conference,
    Nov. 2008, pp. 345 – 348.
    [12] H.Y. Shih, C.N. Kuo, W.H. Chen, T.Y. Yang, and K.C. Juang, “A 250 MHz 14
    dB-NF 73 dB-Gain 82 dB-DR Analog Baseband Chain With Digital-Assisted
    DC-Offset Calibration for Ultra-Wideband,” IEEE J. Solid-State Circuits,
    vol. 45, no. 2, pp. 338 – 350, Jul 2010.
    [13] 張書維,「適用於軟體無線電之基頻電路設計」,國立台灣科技大學電機
    工程系研究所碩士論文,2010.
    [14] C.C. Wang, C.L. Lee, L.P. Lin and Y.L. Tseng, “Wideband 70dB CMOS
    Digital Variable Gain Amplifier Design for DVB-T Receiver's AGC”,IEEE
    Inter. Symp. on Circuits and Systems (ISCIS), vol. 1, pp. 356 – 359,
    May. 2005.
    [15] Y.P. Hsu, Y.T. Lin, C.H. Chen and S.S. Lu, “A Feed-Forward Automatic-
    Gain Control Amplifier for Biomedical Appications”, Asia-Pacific
    Microwave Conference, Dec. 2007, pp. 1-4.
    [16] H.C. Chow and I.H. Wang, “High performance automatic gain control
    circuit using a S/H peak-detector for ASK receiver”, IEEE Circuits and
    Systems International Conference, vol. 2, 2002, pp. 429-432.
    [17] I.H. Wang, W.S. Chen and S.I. Liu, “A 5Gbps CMOS Automatic Gain Control
    Amplifier for 10GBase-LX”, IEEE Asian Solid-State Circuits Conference,
    2005, pp. 169 – 172.
    [18] Y.C. Su, S.Y. Lee, and A. P. Lin, “A 0.6-V 1.8-μW Automatic Gain Control
    Circuit for Digital Hearing Aid” IEEE Asian Circuits and System
    Conference, nov. 30, Dec. 2008, pp. 113 – 116.
    [19] P. E. Allen and D. R. Holberg ,“CMOS Analog Circuit Design”, Oxford
    University Press, 2002.
    [20] D.A. Johns and K.Martin, “Analog Integrated Circuit Design”, John Wiley
    and Sons, 1997.
    [21] A. Yukawa, “A CMOS 8-bit high speed A/D converter IC,” IEEE J. Solod-
    State Circuits, vol 20,pp. 755-779, Jun 1985.
    [22] 林宥佐,「Design of system on Chip (SoC) for Wireless Local Area
    Communication Networks」,國立台灣大學電子工程系研究所碩士論文,2006。

    QR CODE