簡易檢索 / 詳目顯示

研究生: 鄧秉敦
Ping-Tun Teng
論文名稱: 以環形熱轉印技術開發可降解聚乳酸薄膜支架
Development of biodegradable Polylactide graft stent using circular thermal imprint
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 康銘元
Ming-Yuan Kang
湯孝威
Hsiao-Wei Tang
楊申語
Sen-Yeu Yang
鄭正元
Jeng-Ywan Jeng
鍾俊輝
Chun-Hui Chung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 111
中文關鍵詞: 有限體積法環形轉印生物可降解支架聚乳酸
外文關鍵詞: finite volume method (FVM), circular imprint, biodegradable stent, Poly lactide (PLA)
相關次數: 點閱:304下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據美國華爾街預估,支架市場將在未來幾年將呈現倍數成長,達到上百億美金的規模。而人體可降解支架更宣告下一個新醫療器材世代的來臨。本研究首先探討可降解生醫材料聚乳酸PLA(Poly lactide)於熱轉印時材料性質變化與製程參數的關聯性,以找出適合可降解薄膜支架製作的加工參數,並開發環形轉印設備及製造方法製作PLA可降解薄膜支架。
      從熱轉印參數性質研究結果發現,PLA材料會隨熱壓溫度升高與熱壓時間增長造成硬度與楊氏係數增加,但也導致斷裂伸長率變低。分析結果指出此材料性質變化,與熱壓後造成PLA結晶度提高有關。實驗結果所得到的較佳熱轉印製程條件為轉印時間60 s及轉印溫度110 oC,此條件下材料之機械性質約為硬度值17.8 Hv、楊氏係數138.87 MPa、斷裂伸長率6.96 %。此製程條件有效降低材料結晶度及脆化,並將應用於後續以環形熱轉印技術製作可降解薄膜支架。
    於可降解薄膜支架開發中,首先利用商用Computational fluid dynamics (CFD),在有限體積法(Finite volume method, FVM)基礎下,模擬PLA材料於環形模具中模穴的填充行為特徵,了解各製程參數的影響,進而探討PLA管材厚度對於支架成品薄膜厚度的關係,找出較佳的薄膜支架製程參數。
    本研究以自行開發之環形轉印系統成功製作出直徑10 mm、厚度0.7 mm及薄膜厚度為0.1 mm之可降解薄膜支架,由結果得知在轉印時間60 s、轉印溫度110 oC及轉印壓力0.45 MPa時具有最佳的成形性。由徑向壓力試驗結果顯示,本研究所製作的薄膜支架其機械特性與設計值相符合,並且比無薄膜支架具有更良好之抗壓強度。在疲勞分析中,經由測試指出本研究所製作支架可承受半年期以上之血管收縮擴張,初步驗證了置放於血管內之可行性。本研究開發之環形轉印製程,相較於傳統雷射切割支架,可有效地降低製程時間及費用,對於未來在血管和非血管的可降解支架製程及量產上,具有一定的貢獻及突破。


    According to Wallstreet’s prediction, stent market will continue to grow rapidly and would reach billions of USD in the future. In addition, the biodegradable stent could be the main player of the next generation. In this research, Poly lactide (PLA) was firstly analyzed with the properties for varying parameter in the thermal imprint process. Suitable parameters were discussed for biodegradable stent manufacturing. Then, a circular imprint system was developed to fabricate the PLA biodegradable graft stent.
    The thermal imprint results show if the imprint temperature or imprint time increases more, the mechanical properties may change significantly. The results show that this phenomenon mainly occurs due to the crystallization. However, the results show that if we control the imprint temperature 110 oC, imprint time 60 s, a good elongation at break 6.96 %, hardness 17.8 Hv and Young’s modulus 138.87 MPa will be obtained.
    In addition, commercial computational fluid dynamics (CFD) software based on the finite volume method (FVM) was used for simulating the PLA filling behavior, graft thickness relations and optimizing the imprint process. Finally, PLA graft stents were fabricated using the circular imprint process, and the experimental results were compared with the simulation.
    The developed circular imprint system has successfully been used to fabricate PLA graft stents with dimensions of outer diameter 10 mm and thickness 0.7 mm and the graft thickness 0.1 mm. The results show the stent structures can be full filled with the process parameters of imprint time 60 s, imprint temperature 110 oC and imprint pressure 0.45 MPa. The results also show that this graft stent has a great compressive strength compared to non-graft stent, and it can be endure the contraction of artery vessels for longer than half year. This circular imprint process can efficaciously reduce the processing time and cost comparing to laser cutting process which is used to fabricate biodegradable stents currently. This study contributes to the fabrication and mass production of vascular and non-vascular biodegradable stents.

    摘要 .....I Abstract .....III 致謝 VI 目錄 VIII 圖目錄 XII 表目錄 XVII 1 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3論文架構 3 2 文獻回顧 5 2.1聚乳酸高分子簡介 5 2.2聚乳酸發展史 7 2.3聚乳酸特性 8 2.3.1結晶性 8 2.3.2機械性質 13 2.4 生物可降解支架 14 2.5 主動脈瘤 18 2.6 奈微米轉印技術 23 3 熱轉印技術於聚乳酸高分子之製程研究 26 3.1 實驗方法 26 3.1.1材料性質 26 3.1.2片材製作 28 3.1.3 高分子材料試片測試與分析 30 3.2熱轉印技術於PLA製程研究結果與討論 31 3.2.1 PLA 顆粒及平板性質比較 31 3.2.2硬度測試結果與分析 33 3.2.3拉伸測試結果與分析 35 3.2.4 X-ray繞射分析 37 3.2.5 黏滯性分析 42 4 環形熱轉印製作可降解薄膜支架 45 4.1 環形熱轉印製程模擬 47 4.1.1模擬模型設置 47 4.2.2 邊界條件 48 4.2.3 收斂性條件 49 4.2.4 實驗參數對於PLA成形性之影響 49 4.3 可降解薄膜支架設計 50 4.3.1 可降解薄膜支架模型設置 51 4.3.2 邊界條件 52 4.3.4 管材厚度於環形轉印之影響 52 4.4 環形轉印可降解PLA支架 53 4.4.1 環形熱轉印系統 53 4.4.2 模具設計 55 4.4.3 環形轉印流程 58 4.4.4 各參數對於成形性之影響 59 4.5 可降解支架性質測試 62 4.5.1 抗壓強度測試 62 4.5.2 疲勞強度測試 63 4.6 環形轉印模擬結果分析 65 4.6.1 填充速度與模仁受壓力之成形性 65 4.6.2 轉印溫度效應 67 4.6.3 轉印時間效應 69 4.6.4 轉印壓力效應 70 4.7 環形熱轉印PLA支架結果與分析 72 4.7.1 轉印溫度測試結果 72 4.7.2 轉印時間測試結果 73 4.7.3 轉印壓力測試結果 75 4.7.4 環形轉印實驗與模擬結果探討 76 4.8 管材厚度於薄膜支架成形性 79 4.9 機械性質測試結果 83 4.9.1支架抗壓強度結果分析 83 4.9.2 薄膜支架疲勞分析 85 5 結論與未來展望 88 5.1 結論 88 5.2 未來展望 91 參考文獻 92 附錄A 105 附錄B 110

    1.Cassak D., “Art: bucking the trend in bioabsorbable stents” , In Vivo: The Business & Medicine Report, Vol. 26, No. 6, pp. 1-9 (2008)
    2.Bonan R., and Asgar A.W., “Biodegradable Stents- Where Are We in 2009?” , Interventional Cardiology, Jan., pp. 81-84 (2009)
    3.Sousa J.E., Serruys P.W., and Costa M.A., “New Frontiers in Cardiology: Drug-Eluting Stents: Part I” , Circulation, Vol. 107, pp. 2274-2279 (2003)
    4.Hermiller J.B., Raizner A., Cannon L., Gurbel P.A., Kutcher M.A., Wong S.C., Russell M.E., Ellis S.G., Mehran R., and Stone G.W., “Outcomes with the Polymer-based Paclitaxel-eluting TAXUS Stent in Patients with Diabetes Mellitus: the TAXUS-IV Trial” , Journal of American College of Cardiology, Vol. 45, No. 8, pp. 1172-1179 (2005)
    5.Serruys P.W., Ormiston J.A., Onuma Y., Regar E., Gonzalo N., Garcia-Garcia H.M., Niem an K., Bruining N., Dorange C., Miquel-Hebert K., Veldhof S., Webster M., Thuesen L., and Dudek D., “A Bioabsorbable Everolimus-eluting Coronary Stent System (ABSORB): 2-year Outcomes and Results from Multiple Imaging Methods” , Lancet, Vol. 373, pp. 897-910 (2009)
    6.Report #C245, "Worldwide Coronary Stents Market, 2008-2017," published May 2009 by MedMarket Diligence.
    7.Lehermeier H.J., Dorgan J.R., and Way J.D., “Gas permeation properties of poly(lactic acid)” , Journal of Membrane Science, Vol. 190, pp. 243-251 (2001)
    8.Bogaert J.C. and Coszach P., “Poly(lactic acids): a potential solution to plastic waste dilemma” , Macromolecular Symposia, Vol. 153, pp. 287-303 (2000)
    9.Hartmann M.H. and Whiteman N., ‘‘TAPPI Polymers, Laminations, & Coatings Conference’’, Chicago, IL, United States, pp. 467-474 (2000).
    10.Richard A.G. and Bhanu K., “Biodegradable Polymers for the Environment” , Science, Vol. 297, pp. 803-807 (2002)
    11.Pelouze P.M.J., “Memoire sur l’acide lactique” , Annales de chimie et de physique, Vol. 3, No. 13, pp. 257-268 (1845)
    12.Nef J.U., “Dissoziationsvorgange in der Zuckergruppe” , Justus Liebigs Annalen der Chemie, Vol. 403, No. 2-3, pp. 204-383 (1914)
    13.Carothers W.H., Dorough G.L., and van Natta F.J., “Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters” , Journal of the American Chemical Society, Vol. 54, pp. 761-772 (1932)
    14.Michel T.Y., “Suture preparation”, U.S. Pat., 3531561 (1970).
    15.Schneider A.K., “Polylactide sutures”, U.S. Pat., 3636956 (1972).
    16.Wasserman D. and Levy A.J., “Plasticized polyester sutures”, U.S. Pat., 3792010 (1974).
    17.Wasserman D. and Versfelt C.C., “Use of stannous octoate catalyst in the manufacture of L(-)Lactide-glycolide copolymer sutures”, U.S. Pat., 3839297 (1974).
    18.Santis P.D. and Kovacs A.J., “Molecular Conformation of Poly (S-lactic Acid)” , Biopolymers, Vol. 6, PP. 299-306 (1968)
    19.Kricheldorf H.R., Kreiser-Saunders I., Jurgens C. and Wolter D., “Polylactides-Synthesis. Characterization and Medical Application” , Macromolecular Rapid Communications, Vol. 103, No. 1, pp. 85-102 (1996)
    20.Kalb B., Pennings A.J., “General crystallization behaviour of poly(L-lactic acid)” , Polymer, Vol. 21, pp. 607-612 (1980)
    21.Ikada Y., Tsuji H., “Biodegradable polyesters for medical and ecological applications” , Macromolecular Rapid Communications, Vol. 21, pp. 117-132 (2000)
    22.Ikada Y., Jamshidi K., Tsuji H., and Hyon S.H., “Stereocomplex Formation between Enantiomeric Poly(lactides)” , Macromolecules, Vol. 20, No. 4, pp. 904-906 (1987)
    23.Okihara T., Tsuji M., Kawaguchi A., Katayama K., Tsuji H., Hyon S.H., and Ikada Y., “Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide)” , Journal of Macromolecular Science, Part B: Physics, Vol. 30, pp.119-140 (1991)
    24.Steendama R., Steenbergen M.J. van, Hennink W.E., Frijlink H.W., and Lerk C.F., “Effect of molecular weight and glass transition on relaxation and release behaviour of poly(DL-lactic acid) tablets” , Journal of Controlled Release, Vol. 70, pp. 71-82 (2001)
    25.Wu X.S., Synthesis and properties of biodegradable lactic/glycolic acid polymers, Encyclopedic handbook of biomaterials and bioengineering, Marcel Dekker, Inc, pp. 5430-1200 (1995)
    26.Kobayashi J., Asahi T., Ichiki M., Oikawa A., Suzuki H., Watanabe T., Fukada E., and Shikinami Y., “Structural and optical properties of poly lactic acids” , Journal of Applied Physics, Vol. 77, pp. 2957-2973 (1995)
    27.Eling B., Gogolewski S., and Pennings A.J., “Biodegradable materials of poly(L-lactic acid): 1. Melt-spun and solution-spun fibres” , Polymer, Vol. 23, pp. 1587-1593 (1982)
    28.Hoogsteen W., Postema A.R., Pennings A.J., Brinke G.T., and Zugenmaier P., “Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers” , Macromolecules, Vol. 23, No. 2, pp. 634-642 (1990)
    29.Cartier L., Okihara T., Ikada Y., Tsuji H., Puiggali J., and Lotz B., “Epitaxial crystallization and crystalline polymorphism of polylactides” , Polymer, Vol. 41, pp. 8909-8919 (2000)
    30.Di Lorenzo M.L., “Crystallization behavior of poly(L-lactic acid)” , European Polymer Journal, Vol. 41, pp. 569-575 (2005)
    31.Yamane H. and Sasai K., “Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactic acid)” , Polymer, Vol. 44, pp. 2569-2575 (2003)
    32.Di Lorenzo M.L., “Determination of spherulite growth rates of poly(l-lactic acid) using combined isothermal and non-isothermal procedures” , Polymer, Vol. 42, pp. 9441-9446 (2001)
    33.Zhang J., Duan Y., Sato H., Tsuji H., Noda I., Yan S., and Ozaki Y., “Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy” , Macromolecules, Vol. 38, pp. 8012-8021 (2005)
    34.Tsuji H. and Ikada Y., “Properties and morphologies of poly(L-lactide): 1.Annealing condition effects on properties and morphologies of poly(L-lactide)” , Polymer, Vol. 36, pp. 2709-2716 (1995)
    35.Park S.D., Todo M., Arakawa K., and Koganemaru M., “Effect of crystallinity and loading-rate on mode I fracture behavior of poly(lactic acid)” , Polymer, Vol. 47, pp. 1357-1363 (2006)
    36.Miyata T. and Masuko T., “Crystallization behaviour of poly(L-lactide)” , Polymer, Vol. 39, pp. 5515-5521 (1998)
    37.Tsuji H., Mizuno A., and Ikada Y., “Properties and Morphology of Poly(L-lactide). III. Effects of Initial Crystallinity on Long-Term In Vitro Hydrolysis of High Molecular Weight Poly(L-lactide) Film in Phosphate-Buffered Solution” , Journal of Applied Polymer Science, Vol. 77, pp.1452-1464 (1999)
    38.Tsuji H. and Ikada Y., “Properties and morphology of poly(l-lactide)4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution” , Polymer Degradation and Stability, Vol. 67, pp. 179-189 (2000)
    39.Park S.D., Todo M., and Arakawa K., “Effects of isothermal crystallization on fracture toughness and crack growth behavior of poly (lactic acid)” , Journal of Materials Science, Vol. 40, pp.1055-1058 (2005)
    40.Grabow N., Bunger C.M., Sternberg K., Mews S., Schmohl K., and Schmitz K.P., “Mechanical Properties of a Biodegradable Balloon-expandable Stent From Poly(L-lactide) for Peripheral Vascular Applications’’ , Journal of Medical Devices, Vol. 1, pp. 84-88 (2007)
    41.Grabow N., Schlum M., Sternberg K., Hakansson N., Kramer S., and Schmitz K.P., “Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization’’ , Journal of Biomechanical Engineering, Vol. 127, pp. 25-31 (2005)
    42.Su S.H., Chao R.Y.N., Landau C.L., Nelson K.D., Timmons R.B., Meidell R.S., and Eberhart R.C., “Expandable bioresorbable endovascular stent. I. Fabrication and properties” , Annals of Biomedical Engineering, Vol. 31, pp. 667-677 (2003)
    43.Liu S.J., Chiang F.J., Hsiao C.Y., Kau Y.C., and Liu K.S., “Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques” , Annals of Biomedical Engineering, Vol. 38, 3185-3194 (2010)
    44.Venkatraman S., Poh T.L., Vinalia T., Mak K.H., and Boey F., “Collapse pressures of biodegradable stent” , Biomaterials, Vol. 24, No. 12, pp. 2105-2111 (2003)
    45.Lafont A., Li S., Garreau H., Cornhill F., and Vert M., “PLA Stereocopolymers as Sources of Bioresorbable Stents: Preliminary Investigation in Rabbit” , Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 77B, pp. 349-356 (2006)
    46.Chen M.C., Tsai H.W., Chang Y., Lai W.Y., Mi F.L., Liu C.T., Wong H.S., and Sung H.W., “Rapidly Self-Expandable Polymeric Stents with Shape-Memory Property’’ , Biomacromolecules, Vol. 8, pp. 2774-2780 (2007)
    47.吳毅暉、王水深,「腹部主動脈瘤」,臺北市醫師公會會刊,第56卷,第37-45頁,(2012)。
    48.Parodi J.C., Palmaz J.C., and Barone H.D., ”Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms” , Annals of Vascular Surgery, Vol. 5, No. 6, pp. 491-499 (1991)
    49.Chou S.Y., Krauss P.R., and Renstrom P.J., “Nanoimprint lithography” , Journal of Vacuum Science & Technology B, Vol. 14, pp. 4129-4133 (1997)
    50.Song Z., Choi J., You B.H., Lee J., and Park S., “Simulation study on stress and deformation of polymeric patterns during the demolding process in thermal imprint lithography” , Journal of Vacuum Science & Technology B, Vol. 26, pp. 598-605 (2008)
    51.Song Z., You B.H., Lee J., and Park S., “Study on demolding temperature in thermal imprint lithography via finite element analysis” , Microsystem Technologies, Vol. 14, pp. 1593-1597 (2008)
    52.Leveder T., Landis S., Davoust L., and Chaix N., “Optimization of demolding temperature for throughput improvement of nanoimprint lithography” , Microelectronic Engineering, Vol. 84, pp. 953-957 (2007)
    53.Tormen M., Malureanu R., Pedersen R.H., Lorenzen L., Rasmussen K.H., Luscher C.J., Kristensen A., and Hansen O., “Fast thermal nanoimprint lithography by a stamp with integrated heater” , Microelectronic Engineering, Vol. 85, pp. 1229-1232 (2008)
    54.Ito Y., Hasuda H., Morimatsu M., Takagi N. and Hirai Y., “A microfabrication method of a biodegradable polymer chip for a controlled release system” , Journal of Biomaterials Science, Polymer Edition, Vol. 16, No. 8, pp. 949-955 (2005)
    55.Lu C., Cheng M.M.C., Benatar A., and Lee L.J., “Embossing of High-Aspect-Ratio-Microstructures Using Sacrificial Templates and Fast Surface Heating” , Polymer Engineering And Science, Vol. 47, pp. 830-840 (2007)
    56.Keller S.S., Feidenhans’l N., Fisker-Bodker N., Soulat D., Greve A., Plackett D.V., and Boisen A., “Fabrication of biopolymer cantilevers using nanoimprint lithography” , Microelectronic Engineering, Vol. 88, pp. 2294-2296 (2011)
    57.Belligundu S., Shiakolas P.S., Pandey A., Aswath P.B., ’’A Systemic Approach Toward Optimization of the Hot Embossing of Poly-L-Lactic Acid for Biomedical Applications’’ , Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 85B, pp. 469-477 (2008)
    58.Jang S.C., Tseng C.C., Chang L.J., Chang C.F., Lee W.J., Huang C.J., and Liu C.T., “Glass forming ability and thermal properties of the Mg-based amorphous alloys with dual rare earth elements addition” , Materials transactions, Vol. 48, pp.1684-1688 (2007)
    59.韓占忠、王敬、蘭小平,「流體工程仿真計算實例與應用」,北京理工大學出版社,中國,(2007)。
    60.朱紅鈞、林元華、謝龍漢,「流體分析及仿真實用教程」,人民郵電出版社,中國,(2010)。
    61.李進良、李承曦、胡仁喜,「精通流場分析」,化學工業出版社,中國,(2009)。
    62.呂英嘉,「次微米級玻璃結構直接壓印成形之理論分析與實驗研究」,碩士論文,國立清華大學,新竹 (1992)。
    63.Hirt C.W., Nichols B.D., “Volume of Fluid (VOF) method for the dynamics of free boundaries” , Journal of Computational Physics, Vol. 39, pp. 201-225 (1981)
    64.魏妙珊,「三維海嘯湧潮對近岸結構物之影響」,碩士論文,國立中央大學,桃園 (2009)。
    65.薛進德,「船用柴油機單一油孔噴油器模擬黏度對流場影響之研究」,碩士論文,國立高雄海洋科技大學,高雄 (2008)。
    66.Teng P.T., Chang F.Y., Lin M.J., Chang Y.T., Liang P.C. and Huang K.W., “Theoretical and experimental study of a circular imprint process for fabricating polylactide stents”, Japanese Journal of Applied Physics, Vol. 53, 06JK04 (2014)
    67.林孟頡,「以環形熱壓轉印技術開發生物可降解支架」,碩士論文,國立台灣科技大學,台北 (2013)。
    68.蔡璨鴻,「應用熱壓轉印技術於聚乳酸高分子微奈米結構製作之製程研究」,碩士論文,國立台灣科技大學,台北 (2012)。
    69.Averett R.D., Realff M.L., Jacob K., Cakmak M. and Yalcin B., “The mechanical behavior of poly (lactic acid) unreinforced and nanocomposite films subjected to monotonic and fatigue loading conditions”, Journal of Composite Materials, Vol. 45, No. 26, pp. 2717-2726 (2011)

    無法下載圖示 全文公開日期 2019/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE