簡易檢索 / 詳目顯示

研究生: 林信安
Shin-an Lin
論文名稱: 聚乳酸/奈米雲母複合材料之多品質加工參數最佳化
Optimization of Process Parameters for Multiple Qualities of PLA/Nano Mica Composites
指導教授: 黃昌群
Chang-chiun Huang
口試委員: 邱士軒
Shih-hsuan Chiu
郭中豐
Chung-geng Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 聚乳酸奈米雲母熔融插層法混煉射出成型田口方法主效果分析變異數分析層級分析法
外文關鍵詞: Nano-Mica, Melt Compounding, Main Effect Analysis
相關次數: 點閱:244下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是研究可降解性高分子聚乳酸(Poly Lactic Acid, PLA)與奈米雲母(Nano Mica),將兩種材料利用熔融插層法相互混煉(Compounding)成為新的奈米複合材料後進行射出成型(Injection Molding),其加工參數包括混煉時間、螺桿轉速、加熱板溫度、奈米雲母比例、熔料溫度、噴嘴溫度、保壓壓力及射出速度。由於塑膠材料大多強度不足、耐燃性差、無法有效阻隔紫外線以及吸收遠紅外線,故探討之品質特性分別為抗紫外線能力、遠紅外線吸收能力、硬度及耐燃性。本研究經由田口方法(Taguchi Method)中的直交表規劃實驗,再以田口方法中的主效果分析與變異數分析理論得到單一品質的最佳化參數並且探討其加工參數對品質的影響,最後利用層級分析法(Analytic Hierarchy Process) 建立對比矩陣,經過一致性的檢定與總權重計算後進行重要性排序,整理實驗所得到的各品質數據進而探討聚乳酸混合奈米雲母之多品質最佳化之參數,最後依據得到的多品質最佳化之參數透過確認實驗與計算信賴區間,證實其加工參數最佳化組合的再現性。實驗結果顯示,最佳之加工參數分別為混煉時間10 min、螺桿轉速50 rpm、加熱板溫度190 ℃、奈米雲母比例5wt%、熔料溫度220 ℃、噴嘴溫度230 ℃、保壓壓力60 kg/cm2及射出速度80 cm3/sec。透過五次確認實驗顯示四種品質特性平均值分別為:抗紫外線能力98.22%、遠紅外線吸收能力90.53%、硬度M 108.07及耐燃性限氧指數30,其訊號雜音比(Signal-to-Noise ratio, S/N)皆落在95%信賴區間內,故本研究所規劃的實驗有效的提升多種品質特性,對於多品質加工參數最佳化有良好的再現性。


    This thesis studies poly lactic acid and nano mica, using the compounding method to mix the two materials into a new nano compound material for injection molding. The process parameters include compounding duration, spinning speed, heating pad temperature, nano mica’s weight percentage, melting material temperature, nozzle temperature, packing pressure and injection speed. Due to lack of strength of the adhesive material and heat resistance, there is no way to effectively block ultraviolet rays and adsorb infrared far-infrared, therefore, the qualities under research are the ability to resist ultraviolet rays, the ability to absorb infrared rays, hardness, and heat resistance. The planning of this study draws from the Taguchi method’s array, then further using the parameters and results of the Taguchi method to determine the optimal values for the parameters in order to examine the effects of these parameters on the qualities. We use analytic hierarchy process to establish contrast matrix, through consistent examination and recalculation to determine the priorities, organizing the states from each quality in the experiment to determine the optimal parameters for the new nano compound material, In the end, we use the results of the optimal parameters to verify and calculate the margin of error and to prove the optimal parameters repeatability. The results show that the optimal parameters are compounding duration 10min, spinning speed 50 rpm, heating pad temperature 190 ℃, nano mica’s weight percentage 5wt%, melting material temperature 220 ℃, nozzle temperature 230 ℃, packing pressure 60 kg/cm2 and injection speed 80 cm3/sec. After five experiments, the four qualities averages are: ultraviolet resistance 98.22%, far-infrared absorbance 90.53%, strength M 108.07 and melting material oxygen limitation number 30, The Signal-to-Noise ratios are within 95% significance interval. Therefore, this experiment effectively enhanced multiple qualities of the material and produced good repeatability in results for the optimal parameters.

    摘要 I ABSTRACT III 誌謝 IV 目錄 V 圖索引 VIII 表索引 X 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 相關文獻探討 5 1.3.1 聚乳酸複合奈米雲母 5 1.3.2 混煉製備與射出製程 6 1.3.3 多種品質最佳化 8 1.4 論文架構 10 1.5 研究流程 11 第2章 實驗材料與設備 12 2.1 實驗材料 12 2.1.1 聚乳酸 12 2.1.2 奈米雲母 14 2.2 加工設備 16 2.2.1 塑譜儀 16 2.2.2 射出成型機 16 2.3 材料分析 18 2.3.1 熱重損失分析儀 18 2.3.2 熱示差分析儀 19 2.3.3 粒徑分析 20 2.3.4 可見光/紫外光光譜 21 2.3.5 洛氏硬度試驗機 23 2.3.6 極限氧氣指數測試儀 23 第3章 多重品質製程最佳化理論 25 3.1 田口實驗法 25 3.1.1 直交表 25 3.1.2 訊號雜音比 26 3.1.3 品質損失 27 3.1.4 變異數分析 29 3.1.5 信賴區間 31 3.2 層級分析法 32 3.2.1 目的與假設 32 3.2.2 層級要素 33 3.2.3 評估尺度 35 3.2.4 層級分析法的進行步驟 36 第4章 實驗步驟與規畫 39 4.1 實驗材料 39 4.2 材料分析 40 4.3 實驗規劃 43 4.4 實驗設備 44 4.5 檢測程序 45 4.5.1 抗紫外線能力 45 4.5.2 吸收遠紅外線能力 46 4.5.3 硬度 46 4.5.4 耐燃性 46 第5章 實驗結果與討論 47 5.1實驗數據分析 47 5.1.1抗紫外線能力數據分析 47 5.1.2遠紅外線吸收能力數據分析 51 5.1.3 硬度數據分析 53 5.1.4耐燃性限氧指數數據分析 56 5.2 多品質特性分析 60 5.2.1 層級分析法 60 5.3 確認實驗 64 5.3.1 信賴區間 64 第6章 結論 67 參考文獻 69

    [1] G. Zhang, J. Z. Wang and S. D. Shen, “Miscibility and Phase Structure of Binary Blends of Polylactide and Poly(Methyl Methacrylate),” Journal of Polymer Science : Part B : Polymer Physics, Vol. 41, pp. 23-30, 2003.

    [2] M. S. Huda, A. K. Mohanty, L. T. Drzal and M. Misra, “Chopped Glass and Recycled Newspaper as Reinforcement Fibers in Injection Molded Polylactic Acid Composites: A Comparative Study,” Composites Science and Technology, Vol. 66, pp. 1813-1824, 2006.

    [3] H. J. Sue and K. J. Wang, “Impact Fracture Mechanisms Investigation of MICA-Filled Polyurethane/Urea Rim Composites,” Journal of Polymer Research, Vol. 2, pp. 163-170, 1995.

    [4] W. Kang, M. Wong, X. Xia and H. Ding, “Sericite Two-Dimensional Sheet Material Mechano-Chemical Modification and Applied Research,” Journal of Beijing University of Science and Technology, Vol. 26, No.6, pp. 1, 2004.

    [5] S. X. Yan, “Study on Preparation and Properties of PMMA /Mica and PMMA /MMT Composites,” Master Thesis, Department of Mechanical Engineering, Ching Yun University, 2008.

    [6] A. P. Marie, A. Michael, D. Philippe, H. Catherine, R. Amdre and D. Philippe, “New Nanocomposite MaterialBased on Plasticized Poly(L-Lactide) and Organo-Modified Momtmorillonites : Thermal and Morphological Study,” Polymer, Vol. 44, pp. 443-450, 2003.

    [7] M. Sukka, N. Cerini, S. S. Ghosh and K. I. Winey, “Transcrystallization of PTFE Fiber/PP Composites,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 34, pp. 1443, 1996.

    [8] H. R. Allcock and F.W. Lamp, Contemporary Polymer Chemistry, Second Edition, Pretice Hall., Inc, 1990.

    [9] Y. C. Chen, “Preparation and Characterization of Nano-silver Doped Sericite,” Master Thesis, Department of Chemistry and Engineering, Chung Yuan Christian University, 2007.

    [10] S. Fakirov, Structure Development During Polymer Processing, Kluwer Academic Publisher, 1999.

    [11] J.C. Viana, N. Billon and A. M. Cunha, “The Thermomechanical Environment and the Mechanical Properties of Injection Moldings,” Polymer Engineering and Science, Vol. 12, pp. 1522-1533, 2004.

    [12] A. Seigmann, A. Buchman and S. Kenig, “Residual Stresses in Polymer III : The Influence of Injection-Molding Process Condition,” Polymer Engineering and Science, Vol. 22, No. 40, pp. 560, 1982.

    [13] M. H. Chung, “Study on Weld-line of ABS Thin-wall Injection Molding Parts,” Master Thesis, Department of Mechanical Engineering, Chung Yuan Christian University, 2001.

    [14] R. P. Koster, “Importance of Injection Molding Parameters for Mechanical Performance of Cold Flow Weld Lines,” Journal of Injection Molding Technology, Vol. 3, No. 3, pp.154-158, 1999.

    [15] P. L. Su, “Study on the Influence of Molding Conditions on the Properties of Injection Molded Nanocomposites of Nylon6/Fluoromica,” Ph. D. Dissertation, Department of Mechanical Engineering, Chung Yuan Christian University, 2004.

    [16] K. Chockalingam, N. Jawahar, K. N. Ramanathan and P.S. Banerjee, “Optimization of Stereolithography Process Parameters for Part Strengthusing Design of Experiments,” International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 79-88, 2006.
    [17] T. Erzurumlu and B. Ozcelik, “Minimization of Warpage and Sink Index in Injection-Molded Thermoplastic Parts Using Taguchi Optimization Method,” Materials and Design, Vol. 27, pp. 856-861, 2006.

    [18] L. I. Tong, C. T. Su and C.H.Wang , “The Optimization of Mulit- ResponseProblems in Taguchi Method,” International Journal of Quality and Reliability Management , Vol. 14, pp. 367-380,1997.

    [19] C. I. Hsu, “Optimization of Injection Molding Process and Mechanical Properties of POM/GF Composites,” Ph. D. Dissertation, Department of Mechanical Engineering, National Central University, 2010.
    [20] M. K. Tiwari, N. Raghavendra, S. Agrawal, and S. K. Goya, “A Hybrid Taguchi-Immune Approach to Optimize an Integrated Supply Chain Design Problem with Multiple Shipping,” European Journal of Operational Research, Vol. 1, No. 9, pp. 201-223, 2009.

    [21] M. L. Tseng, Y. H. Lin, and A. S. F. Chiu, “Fuzzy AHP Based Study of Cleaner Production Implementation in Taiwan PWB Manufacturer,” Journal of cleaner production, Vol. 17, pp. 1249-1256, 2009.

    [22] 吳復強編著,品質改善的冺器:產品穩健設計-田口方法之原理與應用,全威圖書股份有限公司,2005。

    [23] 李輝煌編著,田口方法之品質設計的原理與實務,高立圖書有限公司,2008。

    [24] 鄧振源、曾國雄,「層級分析法的內涵特性與應用(上、下)」,中國統計學報,27卷6、7期,民國78年6、7月。

    [25] G. Wahba and C. Gu, “Soft Classification, A.K.A. Risk Estimation, Via Penalized Log Likelihood and Smoothing Spline Analysis of Variance,” The Mathematics of Generalization: The Proceedings of The SFI/CNLS Workshop on Formal Approaches to Supervised Learning, Santa Fe, Addison-Wesley Pub, 1992.

    [26] S. Thomas, “Decision Making for Leaders-The Analytic Hierarchy Process for Decisions in a Complex World,” Pittsburgh, PA: RWS Publications, 1990.

    [27] K. Hafeez, Y. Zhang and N. Malak, “Determining Key Capabilities of a Firm Using Analytic Hierarchy Process,” International Journal of Production Economics, Vol. 76, No. 1, pp. 39-51, 2002.

    [28] 中國國家標準CNS13105,紅外線分光光度分析法通則,1992。

    [29] 中國國家標準CNS13332,塑膠洛式硬度試驗法,1994。

    [30] 美國材料與試驗學會ASTMD2863,測量最小供給塑料燃燒的氧氣指數,1992。

    無法下載圖示 全文公開日期 2015/02/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE