簡易檢索 / 詳目顯示

研究生: 朱文亞
WEN-YAH CHU
論文名稱: 聚己內酯結晶機制之研究
Crystallization Mechanism of Polycaprolactone
指導教授: 洪伯達
Po-Da Hong
口試委員: 王英靖
Ing-Jing Wang
陳志堅
Jyh-Chien Chen
廖文彬
Wen-Bin Liau
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 49
中文關鍵詞: 球晶結晶動力學聚己內酯亞穩定態
外文關鍵詞: Spherulite, Crystallization kinetics, Polycaprolactone ( PCL ), Metastable melt
相關次數: 點閱:204下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文,基本應用示差熱分析儀和偏光顯微鏡將就高分子材料Polycaprolactone(PCL)於等溫結晶化之結晶與熔融行為進行分子量效應之探討。其中,討論到線性與支化PCL於等溫結晶化動力學上之差異。在學理上根據Avrami結晶動力論,並且對照Lauritzen-Hoffman的二次成核理論,以結晶動力學速率論的觀點,分析在不同結晶溫度對應於分子量的結晶生長速率。最後,也對於結晶化後期之運動方程的非線性行為做討論,發現在亞穩態下當結晶條件的變化致使結晶形貌呈現出形形色色的樣態。


    In this study, the effects of molecular weight of Polycaprolactone (PCL) on crystallization and melting behaviors were first investigated using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Then, the differences in isothermal crystallization kinetics between linear and three-arm PCLs were also discussed in this work. The crystallization exotherms measured using DSC were analyzed using a modified Avrami equation. In contrast to the conventional Lauritzen -Hoffman analysis which was based on the growth rates measured at different crystallization temperatures (Tc) for a MW. Finally, The non-linear behavior in the late stage of crystallization was also discussed as well in this study. The morphology of PCL crystallites exhibits various patterns as the crystallization condition changes under metastable state.

    中文摘要……………………………………………………………… I 英文摘要……………………………………………………………… II 誌謝…………………………………………………………………… III 圖表索引……………………………………………………………… IV 符號表………………………………………………………………… VI 前 言………………………………………………………………… 1 第一章 基本理論…………………………………………………… 2 1.1 相變…………………………………………………………. 2 1.2 Avrami equation ……………………………………………... 2 1.3 Lauritzen-Hoffman二次成核理論…………………………... 2 1.4 球晶的生長………………………………………………….. 6 第二章 實驗方法……………………………………………………. 8 2.1 研究目的…………………………………………………….. 8 2.2 研究方法…………………………………………………….. 8 2.3 材料………………………………………………………….. 8 2.4 儀器設備…………………………………………………….. 9 2.4.1 DSC…………………………………………………… 9 2.4.2 OM ……………………………………………………. 9 2.4.3 實驗流程……………………………………………... 9 2.5 實驗溫度區間示意圖………………………………………... 10 第三章 結果與討論………………………………………………… 11 3.1 等溫結晶動力學…………………………………………… 11 3.2 結晶機制…………………………………………………… 18 3.2.1 晶核成長的空間維數………………………………. 18 3.2.2 二次成核理論………………………………………. 19 3.2.3 分子量與結晶機制之關係…………………………. 21 3.2.4 結晶溫度與結晶機制之關係………………………. 23 3.3 結晶的亞穩態……………………………………………… 27 3.3.1 整數折疊與非整數折疊概念………………………. 27 3.3.2 低分子量 PCL 的結晶熔融行為………………….. 30 3.3.3 高分子量 PCL 的結晶熔融行為………………….. 30 3.4 結晶後期Avrami-equation非線性之探討………………... 34 3.4.1 結晶後期之結晶速率………………………………. 34 3.4.2 結晶成核速率與生長速度之競爭…………………. 36 3.5 球晶結構…………………………………………………… 37 3.6 物理性質…………………………………………………… 39 第四章 結論……………………………………………………….. 42 參考文獻……………………………………………………………... 43 附錄………………………………………………………………….. 44 【附錄一】不同分子量 PCL於不同溫度之等溫結晶-結晶峰 ........................... 44 【附錄二】不同分子量 PCL於不同溫度之等溫結晶-結晶化度與時間之關係…… 45 【附錄三】不同分子量 PCL於不同溫度之等溫結晶-Avrami plots …………….. 46 【附錄四】不同分子量 PCL於不同溫度之等溫結晶-球晶半徑與時間之關係 …… 47 作者簡介……………………………………………………………… 48 授權書………………………………………………………………… 49

    1. W. Ostwald. J. Z. Phys. Chem., 22, 259, 1897.
    2. S. Z. D. Cheng, A. Keller. Annu. Rev. Mater Sci., 28, 533, 1998.
    3. P. G. de Gennes. J. Polym. Lett., 15, 623, 1977.
    4. G. Strobl, et al. Process in Understand of Polymer Crystallization, Springer, 2007.
    5. J. D. Hoffman. Polymer, 24, 3, 1983.
    6. S. Z. D. Cheng, B. Lotz. Polymer, 46, 8662, 2005.
    7. L. Granasy, et al. Phys. Rev. E72, 011605, 2005.
    8. P. J. Phillips, et al. J. Polymer Sci., B, 25, 1725, 1987.
    9. P. J. Phillips, G. J. Rensch.. J. Polymer Sci., B, 27, 155, 1989.
    10. K. R. Chynoweth, Z. H. Stachurski. Polymer, 27, 1912, 1986.
    11. H. L. Chen, et al. Macromolecules, 30, 1718, 1997.
    12. M. J. Jenkins, K. L. Harrison. Polym. Adv. Technol., 17, 474, 2006
    13. P. Skoglund, A. Fransson. J. App. Polym Sci., 61, 2455, 1996.
    14. U. W. Gedde, et al. Polymer, 45, 5251, 2004.
    15. S. W. Chun, S. Y. Kwak. Macromal. Chem. Phys. 207,1166, 2006.
    16. T. Hideto, et al. Biomacromolecules, 6, 244, 2005.
    17. C. M. Dong, J. L. Wang. Polymer, 47, 3218, 2006.
    18. Z. Wang, B. Jiang. Macromolecules, 30, 6223, 1997.
    19. M. Yasuniwa, et al. Polymer, 47, 7554, 2006.
    20. L. Mandelkern, et al. J. Thermal Analysis and Calorimetry, 59, 435, 2000.
    21. I. Koji, M. Yasuniwa. Polymer, 48, 5398, 2007.
    22. T. Arnaldo, et al. Polymer Testing, 222, 2007.
    23. E. Urbanovici, H. A. Schneider, H. J. Cantow. J. Polymer. Sci.: B, 35, 359, 1997.
    24. B. Wunderlich. Macromolecular Physics, III, Academic, New York, 1980.
    25. J. D. Hoffman, J. J. Weeks. J. Res. Natl. Bur. Stand, Part A, 66, 13, 1962.
    26. D. Turnbull, J. C. Fisher. J. Chem. Phys., 17, 71, 1949.
    27. S. Z. D. Cheng, B. Wunderlich. Macromolecules, 21, 3327, 1988.
    28. T. Nishi, Z. Qiu. Polymer, 44, 7749, 2003.
    29. J. D. Hoffman, et al. J. Phys. Chem., A, 79A, 671, 1975.
    30. A. Toda, S. K. Ghosh, M. Hikosaka. Colloid Polym Sci., 279, 382, 2001.
    31. A. Toda, et al. Polymer, 43,6585, 2002.
    32. A. Toda, et al. Macromoiecules, 35, 6985, 2002.
    33. J. D. Hoffman, R. L. Miller. Macromolecules, 21, 3038, 1988.
    34. B. Wanderlich. Macromolecular Physics., Academic, New York, 1973/1976.
    35. M. Hikosaka. Polymer, 31, 458, 1990.
    36. A. J. Kovacs, et al. Colloid Polymer Sci., 250, 530, 1972.
    37. G. Ungar, A. Keller. Polymer, 27, 1835, 1986.
    38. S. Z. D. Cheng, et al. Polymer, 33, 1140, 1992.
    39. Allegra, Giuseppe. Interphases and Mesophases in Polymer Crystallization, SpringerLink, Berlin Heidelberg, 2005.
    40. J. Yang, B. J. McCoy. J. Chem. Phys.,122, 244905, 2005.
    41. A. Keller, et al. J. Mater Sci., 19, 2781, 1984.
    42. K. Matyjaszewski, S. Qin. Macromolecules, 36, 1843, 2003.

    QR CODE