簡易檢索 / 詳目顯示

研究生: 陳柏翊
BO-YI CHEN
論文名稱: 以電透析程序分離水中銦之研究
Recovery of Indium by Electrodialysis
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
章日行
Jih-Hsing Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 84
中文關鍵詞: 電透析回收吸附沉澱
外文關鍵詞: Adsorption, electrodialysis, Indium, precipitation, recovery
相關次數: 點閱:396下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗探討以電透析程序自酸性水溶液中去除銦的可行性。在硫酸介質中以不同酸鹼值及銦濃度了解其對銦去除率及回收率之影響,並評估其反應機制。其中嘗試將陽離子膜浸泡於含銦溶液中進行前處理,以減少吸附造成之誤差,並在延長操作時間下,了解沉澱行為對去除率與回收率之影響。在硝酸介質中則以定電壓操作來避免分離程序中水解離的可能,並藉由提高銦離子/質子比率來獲得較佳的回收率。再以強酸進行第二次電透析再配合酸洗來避免吸附及沉澱對質量守恆計算上的干擾。最後將雙極膜導入電透析中,以其所持續產生的氫離子將淡極液的酸鹼值維持於酸性,以避免銦的沉澱。
在本實驗中,水中銦離子與質子的競爭導致淡極液中酸鹼值的上升及較低的去除率表現,且酸鹼值的上升可能會使銦在分離過程中產生氫氧化物沉澱。另外,銦離子在分離過程中需先行吸附於陽離子交換膜上,進一步被其他陽離子取代,再脫附至濃極液;如此導致回收率及質量平衡計算上的偏差,是批次操作中不可避免的。過高的銦離子/質子比率導致銦並未被回收至濃極液中。我們藉由第二次電透析成功再生陽離子交換膜,並將銦離子回收至濃極液中,並在酸洗後成功驗證系統質量守恆。雙極膜試驗中,即使整體溶液得以維持於酸性條件,氫離子於接近膜表面的濃度極化現象會導致局部的酸鹼值上升,致使銦沉澱於離子交換膜表面,影響質量守恆的計算。


In this study, the feasibility of indium removal by electrodialysis (ED) and electordialysis with bipolar membrane (EDBP) was investigated. Effects of pH and In concentration in sulfate medium were examined. Possible mechanism was inferred from results of recovery ratio and removal rate. To eliminate influence of adsorption, the cation exchange membrane was pretreated by soaking in indium solution, and the duration was prolonged to investigate the influence of precipitation on removal rate and recovery ratio. In experiments with nitrate medium, operation under constant potential was carried out to avoid the water splitting. Ratio of In3+/H+ was raised to obtain better recovery ratio. Second electrodialysis with strong acid and acid wash were carried out to eliminate the influences of adsorption and precipitation. To maintain the pH at acidic condition in dilute stream, bipolar membrane was introduced in the system to provide sufficient amount of protons.
The competition between indium and protons during ED process resulted in an increase of pH in dilute stream and lower removal rate. The increase of pH may cause the formation of indium hydroxide precipitate. In addition, the separation of indium was based on a series of absorption and desorption on the membranes. This mechanism strongly affected the quantitative analysis of indium. First electrodialysis with excessive ratio of In3+/H+ showed no increase of indium in concentrate stream. Indium was successfully collected in concentrate by regeneration of cation exchange membrane with second electrodialysis, and satisfactory mass conservation was observed after acid wash. From results of EDBP process, the concentration polarization of protons caused the regional precipitation of indium near the surface of membrane. It affected the calculation of mass conservation.

摘要 I ABSTRACT VII Acknowledgment IX CONTENTS XI LIST OF FIGURES XIII LIST OF TABLES XV CHAPTER 1 INTRODUCTION 1-1 1.1. Background 1-1 1.2. Objective 1-1 CHAPTER 2 LITERATURE REVIEW 2-1 2.1. Indium 2-1 2.1.1 Aqueous chemistry of indium 2-1 2.1.2. Treatment techniques of indium removal 2-2 2.2 Electrodialysis 2-3 2.2.1. Principles 2-3 2.2.2. Ion-exchange membranes 2-4 2.2.3. Operation parameters 2-6 2.2.4. Concentration polarization and limiting current density 2-6 2.2.5. Removal of heavy metals by conventional electrodialysis 2-9 Chapter 3 Experimental 3-1 3.1 Materials 3-1 3.1.1 Chemicals 3-1 3.1.2 Equipment and instruments 3-3 3.1.3 Electrodialysis (ED) & Electrodialysis with bipolar membrane (EDBP) 3-4 3.2 Methods 3-7 3.2.1 The preparation of reagent solution 3-7 3.2.2 Electrodialysis 3-8 3.2.3 Sample pretreatment and analysis 3-13 3.2.4. Evaluation of performance 3-14 3.2.5 Mass conservation 3-15 3.2.6 Calculation of current efficiency 3-15 3.2.7 Calculation of energy consumption(EC) 3-16 3.2.8. Speciation determination 3-17 Chapter 4 RESULTS AND DISCUSSION 4-1 4.1 Removal of indium from sulfate medium with MA3475/MC3470 4-1 4.1.1Speciation of In in sulfate medium 4-1 4.1.2 Limiting current density 4-3 4.1.3 Electrodialysis separation process 4-4 4.1.4 Surface analysis of CEM by SEM-EDS 4-9 4.1.5 Desorption tests of ion exchange membranes 4-11 4.2 Removal of indium from sulfate medium with FAB/FKB 4-12 4.2.1 Limiting current density 4-12 4.2.2 Electrodialysis separation process 4-13 4.3 Removal of indium from nitrate medium with FAB/FKB 4-16 4.3.1 Speciation of In in nitrate medium 4-16 4.3.2 Limiting current density 4-18 4.3.3 Precipitation after measurement of limiting current density 4-19 4.3.4 Electrodialysis separation process 4-20 4.4 Removal of indium from nitrate medium by EDBP 4-27 4.4.1 Electrodialysis with bipolar membrane 4-28 Chapter 5 CONCLUSIONS AND SUGGESTIONS 5-1 5.1 Conclusions 5-1 5.2 Suggestions 5-2 REFERENCES R-1

Abou-Shady, A., Peng, C., Almeria O, J., Xu, H., (2012). Effect of pH on separation of Pb (II) and NO3- from aqueous solutions using electrodialysis. Desalination, 285, 46-53.
Alfantazi, A.M., Moskalyk, R.R., (2003). Processing of indium: A review. Minerals Engineering, 16, 687-694.
Alvarado, L., Chen, A., (2014). Electrodeionization: Principles, strategies and applications. Electrochimica Acta, 132, 583-597.
Aziz, A., Lyle, S.J., (1968). Partition studies of chemical equilibria in indium(III) fluoride and sulphate systems. Journal of Inorganic and Nuclear Chemistry, 30, 3223– 3229.
Baldasso, C., Marczak, L.D.F., Tessaro, I.C., (2014). A comparison of different electrodes solutions on demineralization of permeate whey. Separation Science and Technology, 49, 179-185.
Benvenuti, T., Krapf, R.S., Rodrigues, M.A.S., Bernardes, A.M., Zoppas-Ferreira, J., (2014). Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Separation and Purification Technology, 129, 106-112.
Bouhidel, K.E., Lakehal, A., (2006). Influence of voltage and flow rate on electrodeionization (EDI) process efficiency. Desalination, 193, 411-421.
Caprarescu, S., Radu, A.-L., Purcar, V., Sarbu, A., Vaireanu, D.-I., Ianchis, R., Ghiurea, M., (2014). Removal of Copper Ions from Simulated Wastewaters Using Different Bicomponent Polymer Membranes. Water, Air, and Soil Pollution, 225 (8).
Chamoulaud, G., Belanger, D., (2005). Modification of ion-exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current-voltage curves. Journal of Colloid and Interface Science, 281, 179-187.
Chang, J.-H., Ellis, A.V., Tung, C.-H., Huang, W.-C., (2010). Copper cation transport and scaling of ionic exchange membranes using electrodialysis under electroconvection conditions. Journal of Membrane Science, 361, 56-62.
Chen, S.S., Li, C.W., Hsu, H.D., Lee, P.C., Chang, Y.M., Yang, C.H., (2009). Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes. Journal of Hazardous Materials, 161, 1075-1080.

Chou, W. L., Yang, K. C., (2008). Effect of various chelating agents on supercritical carbon dioxide extraction of indium (III) ions from acidic aqueous solution. Journal of Hazardous Materials, 154, 498-505.
Díaz-Pavón, A.L., Cerpab, A., Alguacila, F.J., (2014). Processing of indium (III) solutions via ion exchange with Lewatit K-2621 resin. Revista de Metalurgia, 50.
Ergun, E., Tor, A., Cengeloglu, Y., Kocak, I., (2008). Electrodialytic removal of fluoride from water: Effects of process parameters and accompanying anions. Separation and Purification Technology, 64, 147-153
Ferguson, R. C., Dobud P. and Tuck D. G., (1968) Co-ordination compounds of indium. Part VII. The stability of indium(III) nitrate complexes in aqueous solution. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1058-1060.
Fu, F., Wang, Q., (2011). Removal of heavy metal ions from wastewaters: A review Journal of Environmental Management, 92, 407-418.
Gherasim, C.V., Křivčík, J., Mikulášek, P., (2014). Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions. Chemical Engineering Journal, 256, 324-334.

Herdzik, I., Dembinski, W., Narbutt, J., Siekierski, S., (2012). Separation of gallium and indium isotopes by cation and anion exchange chromatography. Solvent Extraction and Ion Exchange, 30, 593-603.
Huang, C.H., Xu, T.W., (2006). Electrodialysis with bipolar membrane for sustainable development. Environmental Science and Technology, 40, 5233-5243.
Ibanez, R., Stamatialis, D.F., Wessling M., (2004). Role of membrane surface in concentration polarization at cation exchange membranes. Journal of Membrane Science, 239, 119-128
Izatt, R.M., Eatough, D., Christensen, J.J., Bartholomew, C.H., (1969). Calorimetrically determined log K, H, and S values for the interaction of sulphate ion with several bi- and tri-valent metal ions. Journal of the Chemical Society. A. Inorganic, Physical, Theoretical, 47–53.
Jensen, P.E., Ottosen, L.M., Allardb, B., (2012). Electrodialytic versus acid extraction of heavy metals from soil washing residue. Electrochimica Acta, 86, 115-123.
Jeon, C., Cha, J.-H., Choi, J.-Y., (2015). Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater. Journal of Industrial and Engineering Chemistry, 27, 201-206.

Jiang, J., Liang, D., Zhong, Q., (2011). Precipitation of indium using sodium tripolyphostephate. Hydrometalurry, 106, 165-169.
Kang, H. N., Lee, J. Y., Kim, J. Y., (2011). Recovery of indium from etching waste by solvent extraction and electrolytic refining. Hydrometalurry, 110, 120-127.
Karas, F., Hnat, J., Paidar, M., Schauer, J., Bouzek, K., (2014). Determination of the ion-exchange capacity of anion-selective membranes. International Journal of Hydrogen Energy, 39, 5054-5062.
Kariduraganavar, M.Y., Nagarale, R.K., Kittur, A.A., Kulkarni, S.S., (2006). Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination, 197, 225-246.
Khan, M.A., Kumar, M., Alothman, Z.A., (2015). Preparation and characterization of organic-inorganic hybrid anion-exchange membranes for electrodialysis. Journal of Industrial and Engineering Chemistry, 21, 723-730.
Li, H. M., Liu, J. S., Gao, X. Z., Liu, C., Guo, L., Zhang, S. X., Liu, X. Y., Liu, C. P., (2012). Adsorption behavior of indium (III) on modified solvent impregnated resins (MSIRs) containing secoctylphenoxy acetic acid. Hydrometallurgy, 121-124, 60-67.
Li, X., Deng, Z., Li, C., Wei, C., Li, M., Li, M., Fan G., Rong, H., (2015). Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA. Hydrometallurgy, 156, 1-5.
Lupi, C., Pilone, D., (2014). In(III) hydrometallurgical recovery from secondary materials by solvent extraction. Journal of Environmental Chemical Engineering, 2, 100-104.
Martí-Calatayud, M.C., García-Gabaldón, M., Pérez-Herranz, V., (2012). Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. Journal of Membrane Science, 392-393,137-149.
Minamisawa, H., Murashima, K., Minamisawa, M., Arai, N., Okutani, T., (2003). Determination of indium by graphite furnace atomic absorption spectrometry after co-precipitation with chitosan. Analytical Science, 19, 401-404.
Mohammadi, T., Razmi, A., Sadrzadeh, M., (2004). Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 167, 379-385.
Nanda, R.K., Aditya, S., (1962). Studies on ions association equilibria. Spectrophotometric determination of the thermodynamic in stability constants of AlSO4+, GaSO4+, and InSO4+. Zeitschrift für Physikalische Chemie, 35, 139-145.
Ortiz, J.M., Sotoca, J.A., Expósito, E., Gallud, F., Garc´ıa-Garc´ıa, V., Montiel, V., Aldaz, A., (2005). Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science, 252, 65-75
Peng, C., Jin, R., Li, G., Li, F., Gu, Q. (2014). Recovery of nickel and water from wastewater with electrochemical combination process. Separation and Purification Technology, 136, 42-49.
Ray, P., (2009). Performance studies of heterogeneous ion exchange membranes in the removal of bivalent metal ions in an electrodialysis stack. Journal of Applied Polymer Science, 113, 1155-1164.
Sadrzadeh, M., Mohammadi, T., (2009). Treatment of sea water using electrodialysis: Current efficiency evaluation. Desalination, 249, 279-285.
Sadrzadeh, M., Mohammadi, T., Ivakpour, J., Kasiri, N., (2009). Neural network modeling of Pb2+ removal from wastewater using electrodialysis. Chemical Engineering and Processing: Process Intensification, 48, 1371-1381.
Sata, T., (2000). Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis - Effect of hydrophilicity of anion exchange membranes on permselectivity of anions. Journal of Membrane Science, 167, 1-31.
Silva, V., Poiesz, E., Heijden, P.V.D., (2013). Industrial wastewater desalination using electrodialysis: evaluation and plant design. Journal of Applied Electrochemistry, 43,1057-1067.
Strathmann, H., (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264, 268-288.
Strathmann, H., Grabowski, A., Eigenberger, G., (2013). Ion-exchange membranes in the chemical process industry. Industrial and Engineering Chemistry Research, 52, 10364-10379.
Sunden, N., (1954b). On the complex chemistry of the indium ion: Part II. The chloride, bromide, and sulfate systems. Svensk Kemisk Tidskrift, 66, 20–33.
Sunden, N., (1954c). On the complex chemistry of the indium ion: Part IV. An investigation of the chloride and sulfate systems by ion exchangers. Svensk Kemisk Tidskrift, 66, 173– 178.
Sunden, N., (1954d). On the complex chemistry of the indium ion: Part V. The chloride, bromide, and sulfate systems from extraction equilibria. Svensk Kemisk Tidskrift, 66, 345–350.
Tanaka, Y., (2002). Water dissociation in ion-exchange membrane electrodialysis. Journal of Membrane Science, 203, 227-244.
Tanaka, Y., (2005). Limiting current density of an ion-exchange membrane and of an electrodialyzer. Journal of Membrane Science, 266, 6-17.
Tanaka, Y., (2010). Water dissociation reaction generated in an ion exchange membrane. Journal of Membrane Science, 350, 347-360.
Tongwen, X., Weihua, Y., (2002). Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis. Journal of Membrane Science, 203,145-153.
Tur’yan, Ya.I., Strizhov, N.K., (1972). Polarographic determination of the instability constant of the sulphato-complex of indium(III). Russian Journal of Inorganic Chemistry, 17, 1066–1067.
Wood, S. A., Samson, I. M., (2006). The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28, 57-102.
Xu, T.W., (2005). Ion exchange membranes: state of their development and perspective. Journal of Membrane Science, 263, 1-29.
Yang, J., Retegan, T., Ekberg, C., (2013). Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy, 137, 68-77.
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., Asghari., F.S., (2015). Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water. The Journal of Supercritical Fluids, 104, 40-48.
Yuan, Y. X., Liu, J. S., Zhou, B. X., Yao, S. Y., Li, H. M., Xu, W. X., (2010). Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy, 101(3-4), 148-155.

無法下載圖示 全文公開日期 2020/10/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE