簡易檢索 / 詳目顯示

研究生: 黃冠誌
Guan-Jhih Huang
論文名稱: 承受靜態負荷功能梯度板在熱環境中之隨機分析
Stochastic Analysis of Functionally graded Plates Under Static Loading in Thermal Environment
指導教授: 呂森林
Sen-Lin Lu
口試委員: 廖崇禮
Chung-Li Liao
黃聰耀
Tsong-Yau Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 熱環境有限元素法擾動法
外文關鍵詞: thermal environment, finite element method, perturbation
相關次數: 點閱:245下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在研究具隨機材料性質之功能梯度板(FGM, functionally graded plate)在熱溫度環境中之隨機響應,假設材料性質為隨機變數且隨厚度方向逐漸改變,文中根據板的一階剪變形理論(first-order shear deformation) ,可得功能梯度板的本構方程式(constitutive equations),以描述功能梯度板之位移及應變與應力的關係,本文並以虛功原理及有限元素法(FEM, finite element method)得到板之統御方程式及近似解,再導入一階擾動法得到功能梯度板響應的平均值及變異數。數值結果顯示,體積指數及溫度場變化對功能梯度板位移響應及應力有顯著的影響,其結果將用蒙地卡羅模擬法驗證之。


    The main purpose of the thesis is to study the random responses of functionally graded plates with random material properties in thermal environment. The material properties are assumed to be random variables and graded in the thickness direction. Based on the first order shear deformation theory of plate, the constitutive equations are formulated to describe the relationship among the displacement, strain, and stress of functionally graded plate. The governing equations of plate are derived by using the virtual work principle and solved by using the finite element method. The static response and stress of the functionally graded plates are investigated by varying the volume function of the ceramic and metallic constituents using a simple law distribution. At last a perturbation technique is employed to obtain the first-order response statistics-mean and variance of the flexural deflection of plate. The results show that the volume fraction and the temperature field distribution have significant effect on both the static displacement response and stress of the functionally graded plate. The results are also verified by using the Monte Carlo simulation.

    摘要 II ABSTRACT III 誌謝 IV 目錄 VI 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3研究動機與目的 6 1.4 本文架構 6 第二章 功能梯度板的構造及力學分析 8 2.1 功能梯度材料及平板基本假設 8 2.2 平板應力應變關係 11 2.3 功能梯度板合應力與合彎矩 13 2.4 熱應力 13 第三章 功能梯度板有限元素分析 17 3.1 有限元素法 17 3.2建立有限元素模型 18 3.3 虛功原理 21 第四章 具隨機性質之功能梯度板 24 4.1 前言 24 4.2 具隨機材料性質功能梯度板的剛性矩陣 24 4.3 具隨機變數功能梯度板之撓度分析 28 4.4 具隨機變數功能梯度板之應力分析 30 4.5蒙地卡羅數位模擬法 33 第五章 數值範例和討論 35 5.1 程式驗證 35 5.2 隨機變數對功能梯度板位移的影響 45 5.3 隨機參數對功能梯度板應力的影響 56 第六章 結論與未來展望 64 6.1 結論 64 6.2 未來展望 65 參考文獻 66 作者簡介 69

    [1] J.N. Reddy, Theory and Analysis of Elastic Plates, Taylor and Francis, Philadelphia, PA, 1999.

    [2] A.M. Afsar and J. Go, “Finite Element Analysis of thermoelastic field in a rotating FGM circular disk,” Applied Mathematical Modelling, Vol.34,(2010).

    [3] M. Shariyat, “Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure,” International Journal of Solids and Structures, Vol.45, (2008).

    [4] Frank F. H. Wu, “Analytical Solutions of Stresses in a Cylindrical Plate Due to Polynomial Radial Temperature Distributions,” Journal of Electronic Packaging, Vol.115, (1993).

    [5] S. M. Shiyekar and Tarun Kant, “An Electromechanical Higher Order Model for Piezoelectric Functionally Graded Plates,” International Journal of Mechanics and Materials in Design, Vol.6, (2010).

    [6] K. M. Liew, X. Q. He, T. Y. Ng and S. Sivashanker, “Active Control of FGM Plates Subjected to A Temperature Gradient: Modelling via finite Element method Based on FSDT,” International Journal For Numerical Methods in Engineering , Vol.52, (2001).

    [7] G. Bao and L. Wang, “Multiple Cracking in Functionally Graded Ceramic/Metal Coatings,” International Journal of Solids and Structures, Vol.32,(1995).

    [8] Chunyu Li, Zhenzhu Zou and Zhuping Duan, “Stress Intensity for Functionally Graded Solid Cylinders,” Engineering Fracture Mechanics, Vol.63,(1999).

    [9] Orakdoǧen, E., Kucukarslan, S.,Sofiyev, A. and Omurtag, M.H., “Finite Element Analysis of Functionally Graded Plates for Coupling Effect of Extension and Bending,” Meccanica, Vol.45,(2010).

    [10] Mohammad Talha and B. N. Singh, “Static Response and Free Vibration Analysis of FGM Plates Using Higher Order Shear Deformation Theory,” Applied Mathematical Modelling, Vol.34, (2010).

    [11] O. O. Oyekoya, D. U. Mba and A.M. El-Zafrany, “Buckling and Vibration Analysis of Functionally Graded Composite Structures Using the Finite Element Method,” Composite Structures, Vol.89, (2009).

    [12] 杜威德,“功能複合板之振動與挫屈分析”,碩士論文國立台灣科技大學機械工程系,民國99年

    [13] Bao-Lin Wang and Zhen-Hui Tian, “Application of Finite Element-Finite Difference Method to The Determination of Transient Temperature Field in Functionally Graded Materials,” Finite Elements in Analysis and Design, Vol.41, (2005).

    [14] S. Brischetto, R. Leetsch and E. Carrera and T. Wallmersperger and B. Krplin, “Thermo-Mechanical Bending of Functionally Graded plates,” Journal of Thermal Stresses, Vol.31 (2008).

    [15] T. Elperin and G. Rudin, “Thermal Stresses in Functionally Graded Materials Caused by A Laser Thermal Shock,” Heat and Mass Transfer, Vol.38, (2002).

    [16] Takuya Morimoto, Yoshinobu Tanigawa and Ryuusuke Kawamura, “Thermal Buckling of Functionally Graded Rectangular Plates Subjected to Partial Heating,” International Journal of Mechanical Sciences, Vol.48, (2006).

    [17] G. N. Praveen, J. N. Reddy, “Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates,” International Journal of Solids and Structures, Vol.35, (1998).

    [18] P. Malekzadeh and A. Alibeygi Beni, “Free Vibration of Functionally Graded Arbitrary Straight-Sided Quadrilateral Plates in Thermal Environment,” Composite Structures, Vol.92, (2010).

    [19] James A. Murdock, “Perturbations : Theory and Methods,” Philadelphia : Society for Industrial and Applied Mathematics, 1999.

    [20] J. Yang and K. M. Liew and S. Kitipornchai, “Stochastic Analysis of Compositionally Graded Plates With System Randomness Under Static Loading,” International Journal of Mechanical Sciences, Vol.47, (2005).

    [21] S. Kitipornchai and J. Yang and K. M. Liew, “Random Vibration of The Functionally Graded Laminates Thermal Environments,” Computer Methods in Applied Mechanics and Engineering, Vol.195, (2006).

    [22] Singiresu S. Rao, “Reliability-Based Design,” McGraw-Hill, New York, (1993).

    [23] T. T. Soong and M. Grigoriu, “Random Vibration of Mechanical and Structural Systems,” Prentice-Hall, New York, (1993).

    [24] Afeefa Shaker, Wael Abdelrahman, Mohammad Tawfik and Edward Sadek, “Stochastic Finite Element Analysis of The Free Vibration of Functionally Graded Material Plates,” Computational Mechanics, Vol.41, (2008).

    [25] Kyung-Su Na and Ji-Hwan Kim, ”Volume Fraction Optimization for Step-Formed Functionally Graded Plates Considering Stress and Critical Temperature,” Composite Structures, Vol.92, (2010).

    [26] K. M. Liew, X. Q. He and S. A. Meguid, “Optimal Shape Control of Functionally Graded Smart Plates Using Genetic Algorithms,” Computational Mechanics, Vol.33, (2004).

    [27] 汪輝雄, 「纖維複合材料學」, 大學圖書公司, (1990).

    [28] 陳月明, 「使用基因演算法設計最佳化之複合材料積層板」, 碩士論文 國立台灣科技大學機械工程學系, (2004).

    [29] J. N. Reddy, “An Introduction to the Finite Element Method 3rd/e,” McGraw Hill International edition, (2006).

    [30] Y.W. Kwon and H. Bang, “The Finite Element Method Using MATLAB,” CRC Press, (2000).

    QR CODE