簡易檢索 / 詳目顯示

研究生: 許耀基
Yao-Chi Shu
論文名稱: 聚(矽氧烷/丁醚-氨基甲酸酯)共聚合體熱性質
Thermal Properties of Poly(Siloxane/Tetramethyl Ether-Urethane)Copolymer
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 陳幹男
Kan-nan Chen
芮祥鵬
S. P. Rwei
許應舉
Ying-gev Shu
黃繼遠
Chi-yuan Huang
王權泉
Chyung-chyung Wang
林明芳
Ming-fung Lin
賴顯松
Sang-song Lai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 221
中文關鍵詞: 聚氨基甲酸酯矽氧烷醯亞胺TG-IR衰解動力學相分離緩冷焓鬆弛DMA
外文關鍵詞: siloxane, imide. TG-IR, degradation kinetic, phase aeparation, enthalpy relaxation
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究合成出兩系列的聚氨基甲酸酯共聚合體,聚(矽氧烷/丁醚-氨基甲酸酯)(MB)與聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)(MD)共聚合體,兩共聚合體使用不同的鏈延長劑,MB共聚合體用1,4-丁二醇(1,4-butane diol,1,4-BD),MD共聚合體用3,3′,4,4′-二苯基碸四羧酸二酸酐(3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride,DSDA)。MB與MD兩共聚合體的軟鏈節均由聚二甲基矽氧烷(polydimethylsiloxane diol,PDMS)與聚丁醚二醇(polytetramethylene glycol,PTMG)所組成,而MB共聚合體的硬鏈節包含urethane B、urethane G與urethane S;urethane B是由4,4’-二苯甲基二異氰酸鹽(4,4-diphenylmethane diisocyanate,MDI)與1,4-BD所組成的氨基甲酸酯鏈段,urethane G是由MDI與PTMG所組成,urethane S是MDI與PDMS所組成;MD共聚合體的硬鏈節部分因用DSDA取代1,4-BD,所以由urethane G、urethane S與醯亞胺鏈段所組成。
由熱重損失分析(TGA)探討共聚合體的熱衰解行為與機構,顯示不同的氨基甲酸酯硬鏈節結構會在衰解過程中顯現不同的衰解行為。MB共聚合體的TG/DTG曲線顯示urethane B的衰解區域約在200~300℃、urethane G在310~370℃、urethane S在280~350℃,對混合PTMG與PDMS軟鏈節的樣品而言,因urethane G與urethane S的衰解區域產生重疊,所以在TG/DTG曲線上無法將兩個衰解區域區分出來。而MD共聚合體的TG/DTG曲線在硬鏈節衰解區域內只顯示urethane G與urethane S的衰解區域,因為醯亞胺鏈段的衰解溫度在350℃以上。而軟鏈節的衰解行為受PDMS與PTMG含量影響,MB共聚合體的DTG曲線顯示隨PTMG含量增加,其衰解峰會由單峰變具肩部的單峰,最後形成雙峰,MD共聚合體軟鏈節衰解區域除PDMS與PTMG外,還有醯亞胺鏈段的衰解,三種成分的衰解區域產生重疊,因此在其DTG曲線上只出現單一衰解峰。研究顯示高PDMS含量的樣品在520℃以上,會有一個微小肩部產生,是因在衰解過程中PDMS經交換反應產生的高分子量環狀物(macrocyclics)衰解所致。使用熱重分析-霍式紅外線光譜(TG-IR)分析共聚合體在不同溫度下衰解氣體產物,將所得結果與TGA分析結果相配合,可進一步建立共聚合體的衰解機構。研究中使用四個動力學分析方法探討共聚合體的衰解動力學,Friedman、Kissinger、Ozawa、Horowitz-Metzger方法,所得衰解活化能值不儘相似,但其均顯示不同硬鏈節結構(urethane B、urethane G與urethane S),會有各自的衰解活階段。且於共聚合體軟鏈節中導入PDMS或硬鏈節中導入醯亞胺鏈段,均可大大提升共聚合體的衰解活化能,增加其熱穩定性。
用DSC探討共聚合體的相行為,發現混合PTMG與PDMS軟鏈節之聚氨基甲酸酯的相分離程度比以純PDMS為軟鏈節所得的為低,這是因為於共聚合體軟鏈節中導入PTMG會增加軟硬鏈節的相容性。DSC測驗結果也顯示MB與MD共聚合體軟、硬鏈節的相轉移行為,而只有MD共聚合體的軟鏈節有出現結晶相行為。用DSC探討共聚合體硬鏈節非晶區的熱行為,對以純PDMS為軟鏈節的聚氨基甲酸酯(硬鏈節含量62%)做緩冷測試,發現於100℃緩冷時,會出現T1吸熱峰,此硬鏈節吸熱峰的位置與強度和對數緩冷時間成線性關係,表示此行為是因非結晶硬鏈節區的物理老化所造成焓鬆弛現象。將樣品進一步於高溫下緩冷時,發現隨緩冷溫度增加,T1吸熱峰逐漸往高溫移動,最後與T2吸熱峰合併,所以T1峰消失而T2峰增強。在170℃緩冷時,在DSC圖上出現兩個吸熱區域,第ㄧ個吸熱區為硬鏈節區的物理老化所造成焓鬆弛,為T2;第二個吸熱峰為硬鏈節結晶所致,為T3。在150℃以上緩冷的放熱曲線顯示一個T3結晶成長所致的放熱峰。將混合PTMG與PDMS軟鏈節的樣品經緩冷測試發現其在DSC曲線上出現兩個吸熱區域,其分別與短有序硬鏈節區與長有序硬鏈節區(Region I與Region II)有關,由老化測試(annealing measurement)說明此吸熱行為與物理老化的焓鬆弛有關。樣品經高溫熱處理一段時間後出現硬鏈節結晶(Region III)。
經DMA測試發現MB共聚合體的E΄曲線隨著PTMG的含量增加,模數的下降幅度逐漸變緩,而其tanδ曲線顯示隨著PTMG與PDMS混合比例的改變,PTMG與PDMS所致的α峰隨著各自含量的降低而變得平坦且不明顯。MD共聚合體的E΄曲線顯示由於導入DSDA使其在高溫下的E΄值比MB共聚合體的還高。由MB共聚合體的應力-應變曲線隨著PTMG的導入而出現應變誘導結晶現象,因而使樣品有較佳的機械性質。當DSDA導入共聚合體時,由於剛性醯亞胺基團造成低伸度,所以使樣品無法有高強度。


Two series of Polyurethane copolymers, Poly(siloxane/tetramethyl ether-urethane) copolymer (MB) and Poly(siloxane/tetramethyl ether-imide) urethane copolymer (MD), were synthesized in this study. The chain extenders of copolymers are differential, 1,4-butane diol (1,4-BD) and 3,3’,4,4’-diphenylsulfonetetracarboxylic dianhydride (DSDA). The soft segments of both copolymers consist of polytetramethylene glycol (PTMG) and polydimethylsiloxane diol (PDMS). The hard segments of MB copolymer include urethane B which is consisted of 4,4-diphenylmethane diisocyanate (MDI) and 1,4-BD, urethane G consisted of MDI and PTMG, and urethane S consisted of MDI and PDMS. For the MD copolymer, the hard segments are urethane G, urethane S and imide segment due to the DSDA instead of 1,4-BD.
The various urethane hard segments of copolymers lead to various thermal degradation behaviors by TGA. The TG/DTG curves of MB copolymer show the degradation regions of urethane B, urethane G and urethane S are 200~300 °C, 310~370 °C and 280~350 °C, respectively. The degradation regions of urethane G and urethane S are unable to distinguish for samples with PTMG and PDMS mixed soft segments due to the overlapping degradation regions of urethane G and urethane S. The TG/DTG curves of MD copolymer in the degradation regions of hard segments only show the degradation of urethane G and urethane S due to the degradation temperature of imide segments above 350 °C. The degradation behaviors of soft segments are affected by the contents of PDMS and PTMG. The DTG curves of MB copolymer in the degradation regions of soft segments display the degradated peak from a single peak, a single peak with shoulder to double peak as the PTMG content increases. The degradation regions of soft segments for MD copolymer include the degradation behaviors of PDMS, PTMG and imide segment. The degradation regions of these segments show overlap, resulting in a wide degradated peak in the DTG curves. The samples with high PDMS contents present a minor shoulder above 520 °C. PDMS degrades into high molecular weight macrocyclics through interchange reaction and the macrocyclics initially degrade above 520 °C. TG-IR is used to analyze the degraded gas products of copolymers in various temperatures. Combining TGA and TG-IR analysis, the degradation mechanisms of copolymers can be further set up. Four degradation kinetic methods, Friedman, Kissinger, Ozawa and Horowitz-Metzger methods, are proposed to investigate the thermal degradation kinetics of copolymers. Various kinetic methods result in various activation energies. But, they demonstrate that hard segments of urethane B, urethane G and urethane S present individually degradation step. Therefore, incorporating PDMS or imide segment into copolymers can significantly enhance the activation energies and improve the thermal stability.
The phase-separation degree of copolymers with PTMG and PDMS mixed soft segments is lower than that the polyurethane with PDMS soft segment because the copolymers incorporate PTMG in the soft-segment to increase the miscibility between soft segment and hard segment. The MB and MD copolymers in the differential scanning calorimeter (DSC) exhibit soft- and hard-segmented phase-transition. The soft-segmented phase-transition MB and MD including the PDMS and PTMG amorphous phase-transition but the crystal phase-transition only presents on the melting-quenched MD copolymers. The thermal behavior of amorphous hard segment for the copolymer with PDMS soft segment and 62.3 % hard-segment content is studied by differential scanning calorimetry (DSC). Upon annealing at 100 °C, both the T1 temperature and magnitude of the T1 endotherm increase linearly with the increase in logarithmic annealing time. This phenomenon is typical of enthalpy relaxation resulting from the physical aging of amorphous hard segment. Upon annealing above 100 °C, the T1 endotherm shifts to high temperature until its mergers with the T2 endothermic temperature. Following annealing at 170 °C for various periods, the DSC curves present two endothermic regions. The first endotherm assigned as T2 is the result of the enthalpy relaxation of the hard segment. The second endothermic peak (T3) is caused by the hard-segment crystal. The exothermic curves at an annealing temperature of above 150 °C exhibit an exotherm caused by the T3 microcrystalline growth. The DSC curves of sample with PTMG and PDMS mixed soft segments show there are two endothermal regions, which are respectively the short-range ordering and the long-range ordering of hard segment domains (Region I and II). The endothermic behavior demonstrated by annealing is an enthalpy relaxation resulting from prolonged physical aging. Furthermore, the hard-segmented crystal (Region III) appears on the high hard-segment content of sample annealing for a period.
The dynamic mechanical analyses show that the decreasing E΄ of MB copolymer becomes slow as the PTMG content increase. The tanδ indicate that the width of α peak become board as the ratios of PTMG and PDMS vary. The E΄ curves of MD copolymer show the incorporating of DSDA causes the high E΄ at high temperature. The s-s curves of MB copolymer present strain-induced crystalline with the blending of PTMG, so the sample have excellent mechanical properties. The MD copolymer displays low elongation due to imide group. Therefore, sample is incaple of high strength.

摘要 II Abstract VI 誌謝 X 目錄 XI 符號索引 XVII 圖表索引 XXIII 第一章、前言 1 1.1緒論 1 1.2文獻回顧 6 1.2.1 聚氨基甲酸酯結構 6 1.2.2熱穩定性與衰解 8 1.2.2.1 聚氨基甲酸酯的熱穩定性與衰解 8 1.2.2.2 聚二甲基矽氧烷的熱穩定性與衰解 12 1.2.2.3醯亞胺(imide)的熱穩定性與衰解 16 1.2.3 聚氨基甲酸酯熱行為與形態 19 1.2.4聚氨基甲酸酯機械性質 24 1.2.4.1 軟鏈節分子量 25 1.2.4.2 兩相界面關係 26 1.3研究目的 28 第二章、 原理 29 2.1 高分子溶液的特性黏度與分子量的關係 [91~93] 29 2.2 衰解動力學 33 2.2.1 Kissinger method [94] 34 2.2.2 Friedman method [95] 35 2.2.3 Ozawa method [96] 35 2.2.4 Horowitz-Metzger method [97] 35 2.3 焓鬆弛(enthalpy relaxation) 36 第三章、 實驗 38 3.1 實驗材料 38 3.1.1 軟鏈節組成之單體 38 3.1.2 硬鏈節組成之單體 38 3.1.3 溶劑 39 3.1.4 催化劑 39 3.2 實驗流程 40 3.3聚(矽氧烷/丁醚-氨基甲酸酯)共聚合體(MB)製備 41 3.4聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯共聚合體)(MD)製備 44 3.5 實驗測試 49 3.5.1 霍氏紅外線光譜分析(FTIR) 49 3.5.2 核磁共振光譜測試(NMR) 49 3.5.3 熱重損失分析(TGA) 49 3.5.4熱重分析-霍式紅外線光譜(TG-IR)測試 49 3.5.5 掃描式熱差分析儀(DSC) 50 3.5.5.1 相轉移區測試 50 3.5.5.2緩冷效應測試 50 3.5.6 動態機械測試(DMA) 50 3.5.7 機械性質測試 51 3.5.8 X-ray照相圖測試 51 3.5.9 穿透式電子顯微鏡(TEM) 51 第四章、 結果與討論 52 4.1 結構鑑定 52 4.1.1 NMR 52 4.1.2 FTIR 56 4.1.3特性黏度與平均分子量 59 4.2 聚(矽氧烷/丁醚-氨基甲酸酯)與聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)共聚合體衰解特性 63 4.2.1 聚(矽氧烷/丁醚-氨基甲酸酯)(MB)與聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)(MD)共聚合體衰解階段熱重分析 63 4.2.1.1 MB共聚合體的TG/DTG分析 63 4.2.1.2 MD共聚合體的TG/DTG分析 77 4.2.2 聚(矽氧烷/丁醚-氨基甲酸酯)與聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)共聚合體衰解階段步驟:熱重-傅立葉紅外線光譜分析 90 4.2.2.1 以PTMG為軟鏈節的氨基甲酸酯衰解機構 90 4.2.2.2 以PDMS為軟鏈節的聚氨基甲酸酯的衰解機構 92 4.2.2.3 以DSDA為鏈延長劑的聚氨基甲酸酯-醯亞胺的衰解機構 96 4.2.3 聚(矽氧烷/丁醚-氨基甲酸酯)(MB)與聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)(MD)共聚合體衰解動力學分析 105 4.2.3.1 Friedman method 106 4.2.3.2 Kissinger method 110 4.2.3.3 Ozawa method 114 4.2.3.4 Horowitz-Metzger method 118 4.3 聚(矽氧烷/丁醚-氨基甲酸酯)與聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)共聚合體相轉移 130 4.3.1軟鏈節相轉移區 131 4.3.1.1聚(矽氧烷/丁醚-氨基甲酸酯)(MB)共聚合體的軟鏈節相轉移區 131 4.3.1.2聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)(MD)共聚合體的軟鏈節相轉移區 136 4.3.1.3 不同硬鏈節含量對軟鏈節相的影響 140 4.3.2 硬鏈節相轉移區 157 4.3.2.1聚(矽氧烷/丁醚-氨基甲酸酯)(MB)硬鏈節相轉移區 158 4.3.2.2聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)(MD)共聚合體的硬鏈節相轉移區 160 4.3.3 緩冷在MB共聚合體之硬鏈節形態的效應 162 4.3.3.1緩冷對高硬鏈節含量聚氨基甲酸酯的影響 163 4.3.3.2緩冷對混合軟鏈節MB43G30S27樣品的影響 170 4.4 聚(矽氧烷/丁醚-氨基甲酸酯)與聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)共聚合體機械性質 189 4.4.1 動態機械性質(DMA) 189 4.4.2 機械性質(MTS) 197 4.4.1聚(矽氧烷/丁醚-氨基甲酸酯)共聚合體(MB)的MTS分析 197 4.4.1.2 聚(矽氧烷/丁醚-醯亞胺-氨基甲酸酯)共聚合體(MD)的MTS分析 199 結論 210 參考文獻 213 作者簡介 221

1. Hepburn C, ”Polyurethane Elastomers”, Applied Science Publishers, London and New York, 1982.
2. Woods G, ”The ICI Polyurethanes Book”, Published jointly by I.C.I and John Wiley & Sons, 1987.
3. Oertel G, “Polyurethane Handbook”, Hanser Publisher, Munich Vienna New York, 1985.
4. Boretos JH, Pierce WS, “Applications. Science”, 1967, 158, 1481
5. 李光亮,”有機矽高分子化學”,科學出版社,1998
6. Mitsui Nisso Corp Japan Kokai, Tokkyo, Koho, Jpn Pat. 58,217,515, 1983.
7. Kotomkin VY, Baburina VA, Lebedov EP, Bylev VA, Yasmikova TE, Reikhsfeld VO, Khimyai PP, Kremnii IF, Soedin L, 23; Chem Abstr, 95: 43841d, 1980.
8. Kotomkin VY, Baburna VA, Lebdev VP, Kercha YY, Plastic Massy, 27; Chem Abstr, 95: 43841d, 1981.
9. Sava MB, Schulz B, Mercer F, Reddy VN, Belomoina N, J Appl Polym Sci, 1997, 65, 1553.
10. Ho T, Wynne KJ, Prepr ACS Polym Mat Sci Eng Div, 1992, 67, 445.
11. Kuznetsova VP, Zapunnaya K, USSR 422, 246; Chem Abstr, 90; 7759W.
12. Chang TC, Wu KH, Polym Deg Stab, 1998, 60, 161.
13. Connel JW, Smith JG, Jr, Hergenrother PM, J Fire Sci, 1993, 11, 137.
14. Kambour RP, J Appl Polym Sci, 1981, 26, 861.
15. Benrashid R, Nelson GL, J Polym Sci Part A: Polym Chem, 1994, 32, 1847.
16. Leung LM, Koberstein JT, Macromolecules, 1986, 19, 706.
17. Arnold JrC, J Elast Plast, 1974, 6, 238.
18. Masiulanis B, Zielinski R, J Appl Polym Sci, 1985, 30, 2731.
19. Matuszak ML, Frisch KC, J Polym Sci Polym Chem Ed, 1973, 11, 637.
20. Saunders JH, Rubber Chem Technol, 1959, 32, 337.
21. Lyman DJ, Sadri N, Macromol Chem, 1963, 67, 1.
22. Saunders JH, Buckus JK, Rubber Chem Technol, 1966, 39, 461.
23. Yang HH, "Aromatic High-Strength Fiber", John Wiley & Sons Publishers, New York, 1989.
24. Khune GD, J Macro Sci Chem, 1980, A14, 5, 678.
25. Masiulanis B, Muilk UP, J Appl Polym Sci, 1985, 30, 2731.
26. Estes GM, Cooper SL, Tobolsky AV, J Macromol Sci Rev Macromol Chem, 1970, 4, 313.
27. Schneider NS, Desper CR, Illinger JL, King AO, J Macromol Sci Phys 1975, B11, 527.
28. Van Bogart JWC, Lilaonitkul A, Lerner L, Cooper SL, J Macromol Sci Phys, 1983, B17, 267.
29. Van Bogart JWC, Gibson PE, Cooper SL, Polym Sci Polym Phys, 1983, 21, 65.
30. Speckhard TA, Ver Strate G, Gibson PE, Cooper SL, Polym Eng Sci, 1983, 23, 337.
31. Xu M, Macknight WJ, Chen CHY, Thomas EL, Polymer, 1983, 24, 1327.
32. Masiulanis B, Zielinski R, J Appl Polym Sci, 1985, 30, 2731.
33. Matuszak ML, Frisch KC, J Polym Sci Polym Chem Ed, 1973, 11, 637.
34. Saunders JH, Rubber Chem Technol, 1959, 32, 337.
35. Saunders JH, Buckus JK, Rubber Chem Technol, 1966, 39, 461.
36. Ferguson J, Petroviĉ SZ, Eur Polym J, 1976, 12, 177.
37. Grassie N, Zulfiqar M, J Polym Sci Chem Ed, 1978, 16, 1563.
38. Ballistreri A, Foti S, Maravigna P, Montaudo G, Scamporrino E, J Polym Sci Polym Chem Ed, 1980, 18, 1923.
39. Gaboriaud F, Vantelon JP, J Polym Sci Polym Chem Ed, 1982, 20, 2063.
40. Petroviĉ SZ, Zavargo Z, Flynn JH, Macknight JW, J Appl Polym Sci, 1994, 51, 1087.
41. Eaborn C, “Organosilicon Compounds“, Butterworth’s Scientific Publications, London, 1960.
42. Polmanteer KE, Rubber Chem Technol, 1981, 54, 1051.
43. Kambour RP, J Appl Polym Sci, 1981, 26, 861.
44. Benrashid R, Nelson GL, J Polym Sci Part A: Polym Chem, 1994, 32, 1847.
45. Yilgor I, Yilgor E, Polym Bull, 1998, 40, 525.
46. Clarson SJ, Semlyen JA, Polymer, 1986, 27, 91.
47. Thomas TH, Kendrick TC, J Polym Sci (A-2), 1969, 8, 537.
48. Shu YC, Tsen WC, Chuang FS, Polym Deg Stab, accepted.
49. Stanciu A, Bulacovschi V, Condratove V, Fadei C, Stoleriu A, Balint S, Polym Deg Stab, 1999, 64, 259.
50. Yilgor İ, K.Sha'aban A, Steckle WP, Tyagi JD, Wilkes GL, McGrath E, Polymer, 1984, 25, 1800.
51. Heacock JF, Berr CE, S P E Trans, 1965, 5, 105.
52. Bruck SD, Polymer, 1965, 6, 49.
53. Gay FP, Berr CE, J Polm Sci (A-1), 1968, 6, 1935.
54. Ehlers GFL, Fisch KR, Powell W R, USAF Tech Rept, AFML-TR- 67-428, 1968.
55. Ehlers GFL, Fisch K R, Powell WR, J Polm Sci (A-1), 1970, 8, 3511.
56. Petroviĉ ZS, Budinski-Simedic, J Rubber Chem Technol, 1985, 58, 685.
57. Hesketh TR, Van Bogart JWC, Cooper SL, Polym Eng Sci, 1980, 20, 190.
58. Lin MF, Shu YC, Tsen WC, Chuang FS, Polym Int, 1999, 48, 433.
59. Clough SB, Schneider NS, J Macromol Sci Phys, 1968, 2, 553.
60. Miller GW, Saunders JH, J Polym Sci (A-1), 1968, 1923.
61. Seymour RW, Cooper SL, Macromolecules, 1973, 6, 48.
62. Seymour RW, Cooper SL, J Polym Sci Part B: 1971, 9, 689.
63. Van Bogart JW, Bluemke DA, Cooper SL, Polymer, 1981, 22, 1428.
64. Koberstein JT, Russell TP, Macromolecules, 1986, 19, 714.
65. Seymour RW, Estes GM, Cooper SL, Macromolecules, 1970, 3, 579.
66. Ng HN, Allegrezza AE, Seymour RW, Cooper SL, Polymer, 1973, 14, 255.
67. Koberstein JT, Stein SR, J Polym Sci Polym Phys, 1983, 21, 1439.
68. Hu W, Koberstein JT, J Polym Sci Polym Phys Ed, 1994, 32, 437.
69. Chen TC, Shieh TS, Chi JY, Macromolecules, 1998, 31, 1312.
70. Cooper SL, Tobolsky AV, J Appl Polym Sci, 1966, 10, 1837.
71. Camargo RE, Macosko CW, Tiirrell MV, Wellinghof ST, Polym Eng Sci, 1982, 22, 719.
72. Fridman I, Thomas EL, Lee LJ, Macosko CW, Polymer, 1980, 21, 393.
73. Chang AL, Briber RM, Thomas EL, Zdrahala RJ, Critchfield FE, Polymer, 1982, 23, 1060.
74. Abouzahr S, Wilkes GL, J Appl Polym Sci, 1984, 29, 2695.
75. Miller JA, Lin SB, Hwang SKK, Wu KS, Gibson PE, Cooper SL, Macromolecules, 1985, 18, 32.
76. Vallance MA, Castles JL, Cooper SL, Polymer, 1984, 25, 1734.
77. Speckhard TA, Hwang KKS, Lin SB, Tsay SY, Koshiba M, Ding YS, Cooper SL, J Appl Polym Sci, 1985, 30, 647.
78. Smith TL, Polym Eng Sci, 1977, 17, 129.
79. Smith TL, J Polym Sci Polym Phys Ed, 1974, 12, 1825.
80. Speckhard TA, Gibson PE, Cooper SL, Chang VSC, Kennedny JP, Polymer, 1985, 26, 55.
81. Ono K, Shimada H, Nishimura T, Yamashita S, Okamoto H, Minoura T, J Appl Polym Sci, 1977, 21, 3323.
82. Speckhard TA, Gibson PE, Cooper SL, Chang VSC, Kennedny JP, Polymer, 1985, 26, 70.
83. Speckhard TA, Ver-Strate G, Gibson PE, Cooper SL, Polym Eng Sci, 1983, 23, 337.
84. Paul DR, Polym Mater Sci Eng, 1984, 50, 1.
85. Xu Y, Nagarajan MR, Grasel TG, Gibson PE, Cooper SL, J Polym Sci Polym Phys Ed, 1985, 23, 2349.
86. Polmanteer KE, Rubber Chem Technol, 1981, 54, 1051.
87. Bannister DJ, Semlyen JA, Polymer, 1981, 22, 377.
88. Koberstein JT, Galambos AF, Leung LM, Macromolecules, 1992, 25, 6195.
89. Chen-Tsai CHY, Thomas EL, Macknight WJ, Schneider NS, Polymer, 1986, 27, 659.
90. Lin MF, Tsen WC, Shu YC, Chuang FS, J Appl Polym Sci, 2001, 79, 881.
91. Stevens MP, “Polymer Chemistry an Introduction”, Published by Oxford University press, Inc. 1990.
92. Sperling LH, “Introduction to Physical Polymer Science”, John Wiley & Sons, New York, 1993.
93. Elias HG, “An Introduction to Polymer Science”, VCH publishers, New York, 1997.
94. Kissinger HE, Analytical Chemistry, 1957, 29, 1702.
95. Friedman HL, J Polym Sci Part C, 1964, 6, 183.
96. Ozawa T, Bull Chem Soc Jpn, 1965, 38, 1881.
97. Horowitz HH, Metzger G, Analytical Chemistry, 1963, 35(10), 1464.
98. Roberts RC, Sherliker FR, J Appl Polym Sci, 1969, 13, 1069.
99. Richardson M J, Savill NG, Polymer, 1977, 18, 413.
100. Chuang FS, Tsen WC, Shu YC, Polym Deg Stab, 84, 66. 2004.
101. Grassie N, Macfarlane IG, Eur Polym J, 1978, 14, 875.
102. Patnode W, Wilcock DF, J Am Chem Soc, 1946, 68, 358.
103. Hergenrother RW, Yu XH, Cooper SL, Biomaterials, 1994, 15, 635.
104. Shu YC, Lin MF, Tsen WC, Chuang FS, J Appl Polym Sci, 2001, 81, 3489.
105. Lin MF, Shu YC, Tsen WC, Chuang FS, J Appl Polym Sci, 2001, 81, 3502.
106. Galambos AF, Koberstein JT, Polym Mater Sci Eng, 1989, 61, 359.
107. Tenbrinke G, Grooten R, Colloid Polym Sci, 1989, 267, 992.
108. Ellis TS, Macromolecules, 1990, 23, 1494.
109. Agrawal A, J Polym Sci Polym Phys Ed, 1989, 27, 1449.
110. Hodge IM, Berens AR, Macromolecules, 1982, 15, 762.
111. McGowan CB, Kim DY, Blumstein RB, Macromolecules, 1992, 25, 4568.
112. Hodge IM, Macromolecules, 1983, 16, 898.

無法下載圖示 全文公開日期 2013/07/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE