研究生: |
邱唯杰 Wei-Jie Qiu |
---|---|
論文名稱: |
具穿越金屬屏障之諧振式無線充電系統研製 Design and Implementation of a Resonant Wireless Charging System with Metal Barrier Through Mechanism |
指導教授: |
羅一峰
Yi-Feng Luo |
口試委員: |
王順忠
Shun-Chung Wang 鄭于珊 Yu-Shan Cheng 楊宗振 Zong-Zhen Yang 劉益華 Yi-Hua Liu 羅一峰 Yi-Feng Luo |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電機工程系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 無線充電 、磁感應 、CLLC諧振轉換器 、變頻控制 |
外文關鍵詞: | Wireless Charging, IPT, CLLC Resonant Converter, Frequency Control |
相關次數: | 點閱:900 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相對於市面上的無線充電產品,很少人提出穿越金屬屏障的相關論文,目前為磁感應無線充電產品及技術較廣為使用,經過金屬屏障時,強大的渦流損將伴隨著高溫,對使用產品安全產生影響,效率也跟著降低。
本文提出一種能穿越金屬屏障的概念,首先介紹各種無線傳輸技術,並進一步介紹磁感應傳輸技術中的磁場分析,穿越金屬屏障的原理與方法。為了驗證此方法與實驗之可行性,先設計市面上常見的金屬隔板縫隙,並對無線充電系統中發射線圈與接收線圈進行設計與模擬,再由模擬結果設計磁性元件,用來集中磁場,並對各種串並聯補償架構及不同種控制方法進行評估與選用。最後選用串聯-串聯補償電容,及使用變頻控制,進行五階交流電路之電壓增益推導與模擬,並實作一台400瓦CLLC之諧振式無線充電系統來驗證所提方法。由實驗結果顯示,當未隔金屬隔板時,輕載效率為82.40%,滿載效率為89.55%。添加金屬隔板時,輕載效率為68.45%,滿載時系統效率為84.68%。
Few wireless charging products on the market can transfer energy through metal barriers. The main reason is that most products currently use magnetic induction wireless charging technology. When passing through metal barriers, strong eddy current loss will be accompanied by high temperature, which will affect the safety of products and the efficiency will also be decreased.
This thesis proposes a concept charger that can transfer energy through the metal barrier. This study firstly introduces various wireless transmission technologies and further introduces the magnetic field analysis in the magnetic induction transmission technology, and the principle and method of passing through the metal barrier. To verify the feasibility of this method, the common metal partition gaps on the market were first designed, and the transmitter coil and receiver coil in the wireless charging system was designed and simulated, and then the magnetic cores were designed based on the simulation results to concentrate the magnetic field. This study also evaluates and selects various series-parallel compensation architectures and different control methods. Finally, series- series compensation capacitors are used, and frequency control is used to acquire the voltage gain of the fifth-order AC circuit. A 400-watt CLLC resonant wireless charging system is also implemented to verify the proposed method. The experimental results show that when the metal separator is not added, the light load efficiency is 82.40%, and the full load efficiency is 89.55%. When the metal separator is added, the light load efficiency is 68.45%, and the system efficiency at full load is 84.68%.
[1] P. K. Chittoor, and B. C, L. M. Popa, ” A Review on UAV Wireless Charging: Fundamentals, Applications, Charging Techniques and Standards”, IEEE Access Vol.9, pp. 69235– 69266, on.03, May 2021.
[2] A. Mahesh, B. Chokkalingam, L. Mihet-Popa, ’’ Inductive Wireless Power Transfer Charging for Electric Vehicles&2013;A Review,’’ IEEE Access, Vol. 29, pp. 137667– 137713, September 2021.
[3] W. Zhong, D. Xu, R. S. Y. Hui, “Wireless Power Transfer Between Distance and Efficiency,” CPSS Power-Electronics, No.8 , 2020.
[4] 劉宇晨,「700W雙組輸出備援式直流直流轉換器研製」,國立臺灣科技大學電子工程系碩士論文,2008年1月。
[5] 何昆哲,「應用於筆記型電腦之非接觸式電源轉換器」,國立臺灣科技大學電子工程系碩士論文,2015年7月。
[6] W. Zhang, and C. Chris. Mi, “ Compensation Topologies of High-Power Wireless Power Transfer Systems, ” IEEE Transactions on Vehicular Technology, Vol.65, pp. 4768- 4778, July 2015.
[7] V. Shevchenko, O. Husev, R. Strzelecki, B. Pakhaliuk, N. Poliakov, N. Strzelecka, “ Compensation Topologies in IPT Systems: Standards, Requirements, Classification, Analysis, Comparison and Application” IEEE Access Vol.7, pp.120559-120580, no. 27, August 2019.
[8] S. Li, W. Li, J. Deng, T. D. Nguyen, C. C. Mi, ” A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer,” IEEE Transactions on Vehicular Technology, Vol.64, pp. 2261-2273, on. 12, August 2014.
[9] S. C. Moon, B. C. Kim, S. Y. Cho, C. H. Ahn, G. W. Moon, ” Analysis and Design of a Wireless Power Transfer System With an Intermediate Coil for High Efficiency,” IEEE Transactions on Industrial Electronics, Vol.61, pp.5861-5870, on. 21, January 2014.
[10] 黃義傑,「選擇性感應結構於非接觸式手機充電平台之研究」,國立成功大學電機工程系碩士論文,2008年7月。
[11] 張雲程,「CLLC 諧振轉換器效率提升之控制技術」,國立臺北科技大學電機工程系電力電子產業碩士專班碩士學位論文,2020年7月
[12] 曾建銘,「基於最佳化軌跡控制之全橋LLC諧振轉換器輕載效率改善技術」,國立臺灣科技大學電機工程系碩士論文,2020年1月。
[13] 尤哲偉,「串聯-串聯諧振式無線電力傳輸系統之相移控制」,國立臺灣科技大學電子工程系碩士論文,2021年7月。
[14] Y. Yang, W. Zhong, S. Kiratipongvoot, S. C. Tan, S. Y. Ron. Hui, ” Dynamic Improvement of Series–Series Compensated Wireless Power Transfer Systems Using Discrete Sliding Mode Control,” IEEE Transactions on Power Electronics, Vol.33, pp.6351-6360, August 2017.
[15] G. Wei, X. Jin, C. Wang, J. Feng. Zhu,” An Automatic Coil Design Method With Modified AC Resistance Evaluation for Achieving Maximum Coil–Coil Efficiency in WPT Systems,” IEEE Transactions on Power Electronics, Vol.35, pp.6114-6126, November 2019.
[16] 王璟,「用於非接觸式感應功率傳輸之螺旋線圈平台設計」,國立中山大學電機工程學系碩士論文,2017年7月。
[17] M. Ursino, S. Saggini, L. Yang, R. Specogna, L. Jia, F. Iob, L. Wang, Q. Tian, ’’ Hybrid planar Litz coil optimization for phone wireless power transfer,’’ 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), July 2021.
[18] Kunwar Aditya,’’ Analytical design of Archimedean spiral coils used in inductive power transfer for electric vehicles application,’’ Springer-Verlag GmbH Germany, May 2018.
[19] M. Budhia, G. A. C, J. T. Boys,’’ Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems,’’ IEEE Transactions on Power Electronics ,Vol.26, pp.3096-3108, April 2011.
[20] J. Kim, and S. Ahn, ’’ Dual Loop Reactive Shield Application of Wireless Power Transfer System for Leakage Magnetic Field Reduction and Efficiency Enhancement,’’ IEEE Access, Vol.9, pp.118307-118323, August 2021.
[21] A. Tejeda, C. Carretero, J. T. Boys, G. A. Covic,’’ Ferrite-Less Circular Pad With Controlled Flux Cancelation for EV Wireless Charging,’’ IEEE Transactions on Power Electronics, Vol.32, pp. 8349-835920, December 2016.
[22] Y. Kosesoy, E. Aydin, E. Yildiriz, M.T. Aydemir, ’’ Design and Implementation of a 1-kW Wireless Power Transfer System for EV Charging,’’ 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), October 2019.
[23] X. Zhang, Z. Yuan, Q. Yang, H. Meng, Y. Jin, Z. Wang, S. Jiang,” High-Frequency Electromagnetic Force Characteristics on Electromagnetic Shielding Materials in Wireless Power Transmission System,” 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), June 2017.
[24] 徐睿伯「雙組輸出無線能量傳輸系統之研製」,國立臺灣科技大學電子工程系碩士論文,2019年7月。
[25] Marojahan Tampubolon,「具有多個發送線圈之LCC-S補償動態無線電力傳輸」,國立臺灣科技大學電子工程系博士論文,2018年6月。
[26] 黃柏翰,「穿越管狀金屬之電容與電感耦合式無線電力傳輸」,國立臺灣科技大學電機工程系碩士論文,2019年6月。
[27] 湯宇宸,「穿越方形金屬管之無線電力傳輸」,國立臺灣科技大學電機工程系碩士論文,2021年5月。
[28] W. Zhou, Y. G. Su, L. Huang, X. D. Qing, A. P. Hu, ” Wireless Power Transfer Across a Metal Barrier by Combined Capacitive and Inductive Coupling,” IEEE Transactions on Industrial Electronics, Vol.66, pp.4031-4041, July 2018.
[29] 李嘉猷,吳鴻毅,盧鈺承,陳政鴻「跨金屬屏障之無線電能傳輸系統研究」,第四十二屆中華民國電力工程研討會暨第十八屆台灣電力電子研討會,2021年11月。
[30] J. H. Kim, and C. H. Ahn, ” Method to Reduce Metal Plate Effect Between Transmitter and Receiver in Wireless Power Transfer System,” IEEE Antennas and Wireless Propagation Letters, Vol.17, pp.587-590, February 2018.