簡易檢索 / 詳目顯示

研究生: 簡政賢
Cheng-hsien Chien
論文名稱: 數位化控制單級返馳式功率因數修正器之研製
Design and Implementation of a Digitally-Controlled Single-Stage Flyback Converter with Power Factor Correction
指導教授: 劉益華
Yi-Hua Liu
口試委員: 羅有綱
Yu-Kang Lo
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 115
中文關鍵詞: 單級返馳式功率因數修正器電壓隨耦控制法臨界導通模式控制數位變頻控制
外文關鍵詞: single-stage flyback power factor corrector, voltage-follower control, critical conduction mode, digital frequency control
相關次數: 點閱:235下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在下一個世代的照明應用高功率LED具有節能和高效率的優點,一般照明用LED驅動器多採用兩級架構來實現,前一級是功率因數修正電路,後一級才是負責輸出電壓和電流調節的直流對直流轉換器,然而兩級的架構具有兩個獨立的回授控制,加上零件數量無法有效減少使得成本增加,且體積無法縮小。在低瓦數LED照明應用其中成本是需考慮的因素,為了增加其附加價值,所以數位電源控制技術的利基就在於能增加電源產品的應用功能與彈性化設計。
    本篇論文首先設計類比式以L6561為基礎之單級返馳式功率因數修正器,並對L6561之動作原理及控制方法進行分析與探討,接著採用Microchip開發的dsPIC33FJ16GS502數位訊號控制器為核心,實現數位電壓隨耦控制法及數位臨界導通模式之單級返馳式功率因數修正器,經由不同的控制方法以達到改善功因、穩定輸出電壓和數位變頻控制等目的。實驗結果驗證所提出數位控制演算法的正確性,而且顯示類比與數位控制方式皆可以實現效率高於85%和功率因數高於0.9之單級返馳式功率因數修正器。


    High-brightness LEDs are energy-saving and cost-effective choices that enable the next generation of lighting applications. Typically, an LED driver with active PFC is implemented with two-stage topology. The first stage can achieve a near unity power factor and a low THD at universal input voltage range, while the second stage is used for the dc/dc conversion. However, two-stage topology has two independent feedback controls and a high component count, leading to an increased cost and size. In low-power lighting applications, where cost is the dominant issue, such an approach loses attractiveness. On the other hand, digital power control techniques are rapidly gaining market share as designers increasingly appreciate the advantages that the technology offers over its analog counterpart.
    In this thesis, the digital control technology for single-stage flyback power factor corrector (PFC) is investigated. Firstly, one analog single-stage flyback PFC circuits is built using the L6561 PWM control IC. Next, using the same power stage, two digital control algorithms using the Microchip dsPIC33FJ16GS502 digital signal controller (DSC) are developed. The developed digital control algorithms include digital voltage follower control and digital critical conduction mode control. Finally, experimental results of these three single-stage flyback PFC circuits will be provided to validate the correctness of the proposed digital control algorithms. According to the experimental results, all the three presented PFC circuits can achieve efficiency higher than 85% and power factor higher than 90.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文大綱 3 第二章 功率因數修正電路原理簡介 5 2.1 功率因數與諧波失真之定義 5 2.2 功率因數修正器之種類 8 2.2.1 被動式功率因數修正器 8 2.2.2 主動式功率修正器 9 2.3 功率因數修正器之操作模式介紹 10 2.3.1 連續導通模式 11 2.3.2 不連續導通模式 12 2.3.3 臨界導通模式 12 2.4 功率因數修正器之控制模式介紹 13 2.4.1 電壓隨耦控制法 13 2.4.2 峰值電流控制法 14 2.4.3 磁電流控制法 17 2.4.4 平均電流控制法 18 第三章 單級返馳式功率因數修正器之原理 20 3.1 返馳式轉換器操作在臨界導通模式 21 3.2 返馳式轉換器操作在不連續導通模式 24 3.3 返馳式轉換器操作在連續導通模式與不連續導通模式之優缺點分析 26 第四章 單級返馳式功率因數修正器之實務設計 28 4.1 以L6561為基礎之臨界導通模式功率因素修正器 28 4.1.1 L6561 IC簡介 28 4.1.2 L6561之時序與能量關係 30 4.1.3 單級返馳式功率因數修正器使用IC L6561控制動作原理 34 4.2 單級返馳式功率因數修正器之實務設計 36 4.2.1 單級返馳式功率因數修正器之規格 36 4.2.2 電路元件之設計與選用 37 第五章 數位控制之單級返馳式功率因數修正器 48 5.1 數位電源控制方式概述 48 5.2 dsPIC33FJ16GS502微處理器簡介 50 5.3 類比/數位轉換 52 5.4 數位濾波器 54 5.4.1 濾波器簡介 54 5.4.2 有限脈衝響應數位濾波器設計 56 5.5 數位PID控制器 64 5.5.1 PID控制器原理 64 5.5.2 增量型PID控制器設計 66 5.6 數位電壓隨耦控制法 68 5.6.1 數位電壓隨耦控制法之程式流程設計 68 5.7 數位臨界導通模式控制 70 5.7.1 固定導通時間方法推導 70 5.7.2 固定導通時間控制法之硬體架構 73 5.7.3 固定導通時間控制法之程式流程設計 74 第六章 實驗結果與討論 77 6.1 實驗結果 77 6.1.1 以L6561為基礎之單級返馳式功率因數修正器 78 6.1.2 數位控制電壓隨耦法之單級返馳式功率因數修正器 89 6.1.3 數位控制臨界導通模式之單級返馳式功率因數修正器 99 6.2 實驗討論 106 第七章 結論與未來展望 108 7.1 結論 108 7.2 未來展望 109 參考文獻 110

    [1]H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction” in Proc. IEEE Sourtheastcon Conf., 1998, pp 348-353.
    [2]G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp 23-35, February 2005.
    [3]“White LED Driver Circuits for Off-Line Applications using Standard PWM Controllers”, INTERSIL, Feb 2009.
    [4]T. F. Pan, H. J. Chiu, S. J. Cheng, and S. Y. Chyng, “An Improved Single-Stage Flyback PFC Converter for High-Luminance Lighting LED Lamps,” in Proc. ICEMI, no. 4,2007, pp 212-235.
    [5]Busse, S. Mayer, B. Schemmel, and A. Storm, “SEPIC converter to perform power factor correction in a ballast for fluorescent lamps,” Industry Applications Conference, 2005, pp 2770-2774.
    [6]K.-H. Liu and Y.-L Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” IEEE Power Electronics Specialists Conference, vol.2, pp 825-829, Jun. 1989.
    [7]王智弘,「瞄準節能新趨勢,電源晶片商攻勢連連」,新電子雜誌第 269期, 2008年8月號。
    [8]P. N. Enjeti and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 190-195, 1993.
    [9]R. Srinivasan and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
    [10]J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
    [11]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
    [12]L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [13]L. H. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
    [14]B. P. Divakar, and D. Suanto, “A new boost power factor pre-regulator,” IEEE Proc. PEDS’99, vol. 2, pp. 915-920, 1999.
    [15]L.H. Dixon, “High power factor pre-regulation design optimization,” Unitrode Application Note, TOPIC7, pp. 1-12.
    [16]R. Real, B. Molnar, and N. O. Sokai, “Class E resonant regulate dc/dc power converter: analysis of operation and experiment results at 1.5 MHz,” IEEE Trans. Power Electronics, vol. 1, no. 2, pp. 111-120, Apr., 1986.
    [17]K. H. Liu, R. Oruganti, and F. C. Lee, “Quasi-resonant converters topologies and characteristics,” IEEE Trans. Power Electronics, vol. 2, no. 1, pp. 62-71, Jan. 1987.
    [18]葉孝益 ,「切換式電源供應系統功因控制分析與研究」,國立清華大學碩士論文,2003。
    [19]G.Garcia, J. A. Cobos, R. Prieti, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electronics, vol. 18, no. 3, pp. 749-755, May 2003.
    [20]E. Ismail and R. W. Erickson “A single transistor three phase resonant switch for high quality rectification,” in Proc. IEEE Power Electronics Specialists Conference, PESC’92, pp. 1341-1351, July 1992.
    [21]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE Power Electronics Specialists Conference, PESC’90, pp. 800-807, June 1990.
    [22]R. Redl and B. P. Erisman, “Reducing distortion in peak current controlled boost power-factor correctors,” in Proc. IEEE Applied Power Electronics Conference and Exposition, APEC ’94, pp. 576-583, Feb. 1994.
    [23]K. M. Smedley and S. Cuk, “One-cycle control of switching converters,” IEEE Trans. Power Electronics, vol. 10, no. 6, pp. 625-633, Nov. 1995.
    [24]L. Dixon, “Average current mode control of switching power supplies,” in the Unitrode Applications Handbook(IC 1051), Application note U-140, pp. 3-356-3-369, 1997
    [25]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd edition, USA: SCI-TECH Publishing Co. , 2001.
    [26]Chen Zhou, “Active Boost Power Factor Analysis and Design,” IBM Corporation, April 20, 1989.
    [27]M. F. Schlecht, and B. A. Miwa, “Active Power Factor Correction for Switching Power Supplies,” IEEE Transactions on Power Electronics, Vol 1. PE-2, No. 4. October 1987.
    [28]C. A. Canesin, and I. Barbi, “Analysis and Design of Constant-Frequency Peak-Current-Controlled High-Power-Factor Boost Rectifier with Slope Compensation,” APEC '96., Vol. 2, pp. 807-813, March 1996.
    [29]Robert W. Erickson and Dragn Maksimovic, Fundamentals of Power Electronics Second Edition, 2001
    [30]“IEEE 519 Recommended practices and requirements for harmonic control in electrical power systems,” IEEE Industry Applications Soc. /Power Engineering Soc., 1993.
    [31]“Electromagnetic compatibility (EMC) - Part 3-4: Limits – Limits of emission of harmonic current in low-voltage power supply systems for equipment with rated current greater than 16A,” IEC 1000-3-4 Document, 1st Edition, 1998
    [32]J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
    [33]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
    [34]L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [35]L. H. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
    [36]K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electronics, vol. 5, pp. 293-304, July 1990.
    [37]S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
    [38]P. N. Enjeti, and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 190-195, 1993.
    [39]Jun-Young Lee,” Single-Stage AC/DC Converter With Input-Current Dead-Zone Control for Wide Input Voltage Ranges,” IEEE Trans. Industrial Electronics, vol. 54, no. 2, April 2007.
    [40]曾軍皓,「高效能功率因數修正器研製」,國立臺灣科技大學電子工程系碩士論文,民國95年。
    [41]梁適安,「交換式電源供應器之理論與實務設計」,全華科技圖書股份有限公司,2001年
    [42]Abraham I. Pressman, Keith Billings and Taylor Morey: Switching Power Supply Design Third Edition, 2009.
    [43]Mohan, Undeland and Robbins, Power Electronics Third Edition, 2003.
    [44]ST Microelectronics, “Power Factor Corrector,” Data sheet, L6561, 1999.
    [45]ST Microelectronics, “Flyback Converters With the L6561 PFC Controller,” Application notet, AN1060, 2001.
    [46]ST Microelectronics, “Design Equations of High-Power-Factor Flyback Converters Based on the L6561,” Application notet, AN1059, 2003.
    [47]梁適安譯,「高頻交換式電源供應器原理與設計第二版」,全華科技圖書股份有限公司,2008年
    [48]TDK Ferrite Cores for Power Supply and EMI/RFI Filter, 2007.
    [49]Infineon Technologies, “SPP07N60C3 Power Transistor”, Data Sheet, 2004.
    [50]Shindengen Electric ,“D2SB60A General Purpose Rectifiers”, Data Sheet,2004
    [51]STMicroelectronics,”STPS20150CT HIGH VOLTAGE POWER SCHOTTKY RECTIFIER”, Data Sheet, 2003.
    [52]S. Buso, and P. Mattavelli, “Digital Control in Power Electronics,” Morgan & Claypool Publishers, 2006.
    [53]Microchip Technology Inc.,” dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,”Available: http://www.microchip.com.
    [54]曾百由著,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,2007年7月
    [55]Implementing FIR and IIR Digital Filters Using PIC18 Microcontrollers, Application Note AN852.
    [56]Filter Design for dsPIC™ DSC Digital Filter Design and Analysis System, Momentum Data Systems, Inc., 2008.
    [57]Momentum Data System, Inc.,” Digital Filter Design and Analysis System for use with Microchip Technology dsPIC Microcontrollers,” Application note, 2002.
    [58]趙清風,「控制工程初階-使用MATLAB Simulink」,全華科技圖書,2001年
    [59]劉金琨,「先進PID控制-MATLAB仿真」,電子工業出版社,2007年5月。

    無法下載圖示 全文公開日期 2015/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE