簡易檢索 / 詳目顯示

研究生: 陳敬孝
Jing-Hsiao Chen
論文名稱: 基於分段搜尋法之太陽能全域最大功率追蹤
Segmentation Search Method Based PV Global Maximum Power Point Trackings
指導教授: 劉益華
Yi-Hua Liu
口試委員: 陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
楊宗銘
Chung-Ming Young
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 151
中文關鍵詞: 太陽能發電系統部分遮蔽情形全域最大功率追蹤
外文關鍵詞: Photovoltaic generation systems, Partially shaded conditions, Global maximum power point tracking
相關次數: 點閱:281下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能發電系統(Photovoltaic Generation Systems, PGS)經常會發生部分遮蔽情形(Partially Shaded Conditions, PSC),進而使得功率-電壓特性曲線呈現多個峰值的現象,因此開發一追蹤全域最大功率點 (Global Maximum Power Point, GMPP)的方法是相當重要的。對此,本文提出二段式全域最大功率追蹤演算法,在第一階段中,本文根據模擬所決定的分段規則以進行分段搜尋,並在第二階段以本文所提出之新型變動步階擾動觀察法(Variable Step Perturb and Observe, VS-P&O)來增加追蹤全域最大功率點的速度。此方法的優點在於架構簡單、追蹤速度快、追蹤精確度高、改善命中率以及容易與原太陽能發電系統韌體整合等。為了驗證本文所提方法可正確且有效地進行追蹤,因此開發一1.2 kW的電路拓樸,以作為之後用於評估此方法效能之模擬與實驗使用。在實現上,本文利用低成本數位控制器dsPIC33FJ16GS502來實現本文所提之全域最大功率追蹤(Global Maximum Power Point Tracking, GMPPT)演算法。經模擬太陽能發電系統之所有可能遮蔽樣式可知,本文所提方法之平均追蹤精確度可達99.74%,而成功追蹤到全域最大功率點的機率為90.5%。由實驗結果可知本文所提方法可在不同遮蔽樣式下追蹤到全域最大功率點,且在所測試的三種遮蔽樣式中其追蹤精確度皆可高於99.1%。


Photovoltaic generation systems (PGS) frequently experience partially shaded conditions (PSC). Because PSC creates several peak values on the power-to-voltage characteristic curve, developing an algorithm that facilitates tracking global maximum power point (GMPP) is crucial. In this dissertation, a two-stage GMPP tracking algorithm is proposed. In the first stage, the segmentation rules are obtained by performing extensive simulations. During the second stage, a novel variable step-size perturb and observe method to increase the speed of searching for GMPP is proposed. The presented method features advantages, such as simple structures, high tracking speeds, enhanced tracking accuracy, improved success rate, and easy integration with original PGS firmware. To verify the correctness and the effectiveness of the proposed method, a 1.2 kW prototyping circuit is built and simulations as well as experiments are carried out accordingly. In this dissertation, the proposed GMPPT algorithm is implemented using a low cost digital signal controller dsPIC33FJ16GS502. After simulating all possible shading patterns on the 7s1p PGS, the average tracking accuracy of the proposed method is 99.74% and the probability of successfully obtaining the GMPP is 90.5%. Experimental results also validate that the proposed method can obtain GMPP of different shading patterns, the tracking accuracies are all higher than 99.1% for all the three test cases.

摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2 文獻回顧 1.3 研究目的 1.4 論文大綱 1.5 論文貢獻度 第二章 太陽能電池介紹 2.1 太陽能電池原理 2.2 太陽能電池種類 2.3 太陽能電池電氣特性 2.4 太陽能電池串並接特性 2.4.1 均勻照度的情形 2.4.2 受遮蔽時無旁路二極體架構的情形 2.4.3 受遮蔽時有旁路二極體架構的情形 第三章 太陽能最大功率追蹤技術簡介 3.1 傳統最大功率追蹤技術 3.1.1 開路電壓法 3.1.2 短路電流法 3.1.3 擾動觀察法 3.1.4 增量電導法 3.2 進階最大功率追蹤技術 3.2.1 二階式搜尋型 3.2.2 區域搜尋型 3.2.3 軟性計算型 3.2.4 梯度估測型 3.3 各種部分遮蔽情形檢測方法 3.4 欲解決的問題 第四章 分段搜尋法 4.1 部分遮蔽情形對功率-電壓特性曲線的影響 4.2 本文所提方法之基本概念 4.3 檢測部分遮蔽情形的方法 4.4 分段數決定法則 4.5 新型變動步階擾動觀察法 第五章 太陽能最大功率追蹤系統 5.1 最大功率追蹤系統架構 5.2 升壓式轉換器介紹 5.3 升壓式轉換器元件設計 5.4 升壓式轉換器設計驗證 5.5 微處理器簡介 5.6 數位濾波器設計 5.7 程式流程介紹 第六章 太陽能最大功率追蹤模擬與實驗結果 6.1 模擬測試設計與平台介紹 6.2 模擬測試結果與比較 6.3 實驗設計與平台介紹 6.4 實驗波形結果 6.4.1 均勻照度無部分遮蔽條件下測試結果 6.4.2 全域最大功率點在第三峰之部分遮蔽條件下測試結果 6.4.3 全域最大功率點在第四峰之部分遮蔽條件下測試結果 6.4.4 全域最大功率點在第六峰之部分遮蔽條件下測試結果 6.4.5 全域最大功率點位置變動之動態測試結果 第七章 結論與未來研究方向 7.1 結論 7.2 未來研究方向 參考文獻

[1] M. Eckhart, M. El-Ashry, D. Hales, K. Hamilton, P. Rae, and A. Zervos, "Renewables 2014 global status report," in Proceedings of the Renewable Energy Policy Network for the 21st Century, Paris, France, 2014, pp. 1-216.
[2] G. Masson, M. Latour, M. Rekinger, I. T. Theologitis, and M. Papoutsi, "Global market outlook for photovoltaics 2013-2017," in Proceedings of the European Photovoltaic Industry Association, Belgium, 2013, pp. 1-60.
[3] M. H. Moradi, S. M. R. Tousi, M. Nemati, N. S. Basir, and N. Shalavi, "A robust hybrid method for maximum power point tracking in photovoltaic systems," Solar Energy, vol. 94, pp. 266-276, May. 2013.
[4] T. T. Nguyen, H. W. Kim, G. H. Lee, and W. Choi, "Design and implementation of the low cost and fast solar charger with the rooftop PV array of the vehicle," Solar Energy, vol. 96, pp. 83-95, Aug. 2013.
[5] K. M. Tsang, W. L. Chan, and X. Tang, "PLL-less single stage grid-connected photovoltaic inverter with rapid maximum power point tracking," Solar Energy, vol. 97, pp. 285-292, Sept. 2013.
[6] K. S. Tey and S. Mekhilef, "Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level," Solar Energy, vol. 101, pp. 333-342, Jan. 2014.
[7] M. A. Eltawil and Z. Zhao, "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, vol. 25, pp. 793-813, Jun. 2013.
[8] F. Chekired, A. Mellit, S. A. Kalogirou, and C. Larbes, "Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: A comparative study," Solar Energy, vol. 101, pp. 83-99, Jan. 2014.
[9] K. Ishaque and Z. Salam, "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition," Renewable and Sustainable Energy Reviews, vol. 19, pp. 475-488, Mar. 2013.
[10] Y. J. Wang and P. C. Hsu, "Analytical modelling of partial shading and different orientation of photovoltaic modules," IET Renewable Power Generation, vol. 4, no. 3, p. 272, May. 2010.
[11] E. V. Paraskevadaki and S. A. Papathanassiou, "Evaluation of MPP voltage and power of mc-Si PV modules in partial shading conditions," IEEE Transaction on Energy Conversion, vol. 26, no. 3, pp. 923-932, Sept. 2011.
[12] H. Patel and V. Agarwal, "MATLAB-based modeling to study the effects of partial shading on PV array characteristics," IEEE Transaction on Energy Conversion, vol. 23, no. 1, pp. 302-310, Mar. 2008.
[13] K. Ishaque, Z. Salam, H. Taheri, and Syafaruddin, "Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model," Simulation Modelling Practice and Theory, vol. 19, no. 7, pp. 1613-1626, May. 2011.
[14] K. Ishaque, Z. Salam, and Syafaruddin, "A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model," Solar Energy, vol. 85, no. 9, pp. 2217-2227, Jul. 2011.
[15] R. Kadri, H. Andrei, J. P. Gaubert, T. Ivanovici, G. Champenois, and P. Andrei, "Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions," Energy, vol. 42, no. 1, pp. 57-67, Jun. 2012.
[16] C. R. Sánchez Reinoso, D. H. Milone, and R. H. Buitrago, "Simulation of photovoltaic centrals with dynamic shading," Applied Energy, vol. 103, pp. 278-289, Mar. 2013.
[17] J. D. Bastidas, E. Franco, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, "A model of photovoltaic fields in mismatching conditions featuring an improved calculation speed," Electric Power Systems Research, vol. 96, pp. 81-90, Mar. 2013.
[18] M. L. Orozco-Gutierrez, J. M. Ramirez-Scarpetta, G. Spagnuolo, and C. A. Ramos-Paja, "A technique for mismatched PV array simulation," Renewable Energy, vol. 55, pp. 417-427, Jul. 2013.
[19] A. Dolara, G. C. Lazaroiu, S. Leva, and G. Manzolini, "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, vol. 55, pp. 466-475, Jun. 2013.
[20] F. Martínez-Moreno, J. Muñoz, and E. Lorenzo, "Experimental model to estimate shading losses on PV arrays," Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2298-2303, Dec. 2010.
[21] K. Brecl and M. Topič, "Self-shading losses of fixed free-standing PV arrays," Renewable Energy, vol. 36, no. 11, pp. 3211-3216, Nov. 2011.
[22] S. Poshtkouhi, V. Palaniappan, M. Fard, and O. Trescases, "A general approach for quantifying the benefit of distributed power electronics for fine grained MPPT in photovoltaic applications using 3-D modeling," IEEE Transaction on Power Electronics, vol. 27, no. 11, pp. 4656-4666, Nov. 2012.
[23] C. R. Sullivan, J. J. Awerbuch, and A. M. Latham, "Decrease in photovoltaic power output from ripple simple general calculation and the effect of partial shading," IEEE Transaction on Power Electronics, vol. 28, no. 2, pp. 740-747, Feb. 2013.
[24] P. Rodrigo, E. F. Fernández, F. Almonacid, and P. J. Pérez-Higueras, "A simple accurate model for the calculation of shading power losses in photovoltaic generators," Solar Energy, vol. 93, pp. 322-333, Jul. 2013.
[25] T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum power point tracking techniques," IEEE Transaction on Energy Conversion, vol. 22, no. 2, pp. 439-449, Jun. 2007.
[26] A. Reza Reisi, M. Hassan Moradi, and S. Jamasb, "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review," Renewable and Sustainable Energy Reviews, vol. 19, pp. 433-443, Mar. 2013.
[27] B. Subudhi and R. Pradhan, "A comparative study on maximum power point tracking techniques for photovoltaic power systems," IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 89-98, Jan. 2013.
[28] M. A. G. de Brito, L. Galotto, L. P. Sampaio, G. d. A. e Melo, and C. A. Canesin, "Evaluation of the main MPPT techniques for photovoltaic applications," IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1156-1167, Mar. 2013.
[29] P. Bhatnagar and R. K. Nema, "Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications," Renewable and Sustainable Energy Reviews, vol. 23, pp. 224-241, Jul. 2013.
[30] Z. Salam, J. Ahmed, and B. S. Merugu, "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, vol. 107, pp. 135-148, Jul. 2013.
[31] A. Bidram, A. Davoudi, and R. S. Balog, "Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays," IEEE Journal of Photovoltaics, vol. 2, no. 4, Oct. 2012.
[32] G. Velasco-Quesada, F. Guinjoan-Gispert, R. Piqué-López, M. Román-Lumbreras, and A. Conesa-Roca, "Electrical PV array reconfiguration strategy for energy extraction improvememnt in grid-connected PV systems," IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4319-4331, Nov. 2009.
[33] Y. Park, S. K. Sul, C. H. Lim, W. C. Kim, and S. H. Lee, "Asymmetric control of DC-link voltages for separate MPPTs in three-level inverters," IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2760-2769, Jun. 2013.
[34] C. T. Rodríguez, D. Velasco de la Fuente, G. Garcerá, E. Figueres, and J. A. G. Moreno, "Reconfigurable control scheme for a PV microinverter working in both grid-connected and island modes," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1582-1595, Apr. 2013.
[35] A. I. Bratcu, IulianMunteanu, S. Bacha, D. Picault, and B. Raison, "Cascaded DC–DC converter photovoltaic systems - power optimization issues," IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 403-411, Feb. 2011.
[36] L. F. L. Villa, T. P. Ho, J. C. Crebier, and B. Raison, "A power electronics equalizer application for partially shaded photovoltaic modules," IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1179-1190, Mar. 2013.
[37] C. Olalla, D. Clement, M. Rodriguez, and DraganMaksimovic, "Architectures and control of submodule integrated DC-DC converters for photovoltaic applications," IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2980-2997, Jun. 2013.
[38] K. Kobayashi, I. Takano, and Y. Sawada, "A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions," Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 2975-2988, Aug. 2006.
[39] G. Carannante, C. Fraddanno, M. Pagano, and L. Piegari, "Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation," IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4374-4380, Nov. 2009.
[40] Y. H. Ji, D. Y. Jung, J. G. Kim, J. H. Kim, T. W. Lee, and Chung-YuenWon, "A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions," IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1001-1009, Apr. 2011.
[41] K. S. Tey and S. Mekhilef, "Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation," IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5384-5392, Oct. 2014.
[42] J. Qi, Y. Zhang, and Y. Chen, "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions," Renewable Energy, vol. 66, pp. 337-345, Jan. 2014.
[43] S. Bifaretti, V. Iacovone, L. Cinà, and E. Buffone, "Global MPPT method for partially shaded photovoltaic modules," in Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, North Carolina, 2012, pp. 4768-4775.
[44] H. Patel and V. Agarwal, "Maximum power point tracking scheme for PV systems operating under partially shaded conditions," IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1689-1698, Apr. 2008.
[45] H. Renaudineau, A. Houari, J. P. Martin, S. Pierfederici, F. Meibody-Tabar, and B. Gerardin, "A new approach in tracking maximum power under partially shaded conditions with consideration of converter losses," Solar Energy, vol. 85, no. 11, pp. 2580-2588, Aug. 2011.
[46] E. Koutroulis and F. Blaabjerg, "A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions," IEEE Journal of Photovoltaics, vol. 2, no. 2, pp. 184-190, Apr. 2012.
[47] A. Kouchaki, H. Iman-Eini, and B. Asaei, "A new maximum power point tracking strategy for PV arrays under uniform and non-uniform insolation conditions," Solar Energy, vol. 91, pp. 221-232, Mar. 2013.
[48] N. Gokmen, E. Karatepe, F. Ugranli, and S. Silvestre, "Voltage band based global MPPT controller for photovoltaic systems," Solar Energy, vol. 98, pp. 322-334, Nov. 2013.
[49] R. Kotti and W. Shireen, "Efficient MPPT control for PV systems adaptive to fast changing irradiation and partial shading conditions," Solar Energy, vol. 114, pp. 397-407, Feb. 2015.
[50] M. F. Kashif, S. Choi, Y. Park, and S. K. Sul, "Maximum power point tracking for single stage grid-connected PV system under partial shading conditions," in Proceedings of the 2012 IEEE 7th International Power Electronics and Motion Control Conference (ECCE Asia), Harbin, China, 2012, pp. 1377-1383.
[51] A. Kouchaki, H. Iman-Eini, and B. Asaei, "Maximum power point tracking algorithm based on I-V characteristic of PV array under uniform and non-uniform conditions," in Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu Sabah, Malaysia, 2012, pp. 331-336.
[52] T. L. Nguyen and K. S. Low, "A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems," IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3456-3467, Oct. 2010.
[53] N. A. Ahmed and M. Miyatake, "A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions," Electric Power Systems Research, vol. 78, no. 5, pp. 777-784, Sept. 2008.
[54] R. Ramaprabha, M. Balaji, and B. L. Mathur, "Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller," International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 754-765, Jul. 2012.
[55] M. Boztepe, F. Guinjoan, G. Velasco-Quesada, S. Silvestre, and E. Karatepe, "Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm," IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3302-3312, Jul. 2014.
[56] Y. Fan, C. Fang, and Z. Liang, "New GMPPT algorithm for PV arrays under partial shading conditions," in Proceedings of the 2012 IEEE International Symposium on Industrial Electronics (ISIE), Hangzhou, China, 2012, pp. 1046-1051.
[57] G. Escobar, C. N. M. Ho, and S. Pettersson, "Maximum power point searching method for partial shaded PV strings," in Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society (IECON) Montreal, Quebec, Canada, 2012, pp. 5726-5731.
[58] Y. H. Liu, C. L. Liu, J. W. Huang, and J. H. Chen, "Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments," Solar Energy, vol. 89, pp. 42-53, Jan. 2013.
[59] R. Akkaya, A. A. Kulaksız, and Ö. Aydoğdu, "DSP implementation of a PV system with GA-MLP-NN based MPPT controller supplying BLDC motor drive," Energy Conversion and Management, vol. 48, no. 1, pp. 210-218, Jun. 2007.
[60] Syafaruddin, E. Karatepe, and T. Hiyama, "Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions," IET Renewable Power Generation, vol. 3, no. 2, p. 239, Jun. 2009.
[61] Syafaruddin, E. Karatepe, and T. Hiyama, "Performance enhancement of photovoltaic array through string and central based MPPT system under non-uniform irradiance conditions," Energy Conversion and Management, vol. 62, pp. 131-140, Jun. 2012.
[62] K. Punitha, D. Devaraj, and S. Sakthivel, "Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions," Energy, vol. 62, pp. 330-340, Oct. 2013.
[63] Syafaruddin, T. Hiyama, and E. Karatepe, "Investigation of ANN performance for tracking the optimum points of PV module under partially shaded conditions," in Proceedings of the 2010 Conference Proceedings (IPEC), Singapore, 2010, pp. 1186-1191.
[64] E. Karatepe, T. Hiyama, M. Boztepe, and M. Çolak, "Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions," Energy Conversion and Management, vol. 49, no. 8, pp. 2307-2316, Mar. 2008.
[65] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and BarryW.Williams, "A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1596-1606, Apr. 2013.
[66] A. Sayal, "MPPT techniques for photovoltaic system under uniform insolation and partial shading conditions," in Proceedings of the 2012 Students Conference on Engineering and Systems (SCES), Allahabad, Uttar Pradesh, 2012, pp. 1-6.
[67] Y. Shaiek, M. Ben Smida, A. Sakly, and M. F. Mimouni, "Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators," Solar Energy, vol. 90, pp. 107-122, Feb. 2013.
[68] S. Daraban, D. Petreus, and C. Morel, "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, vol. 74, pp. 1-15, Jul. 2014.
[69] H. R. Mohajeri, M. P. Moghaddam, M. Shahparasti, and M. Mohamadian, "Development a new algorithm for maximum power point tracking of," in Proceedings of the 2012 20th Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2012, pp. 489-494.
[70] H. Taheri, Z. Salam, K. Ishaque, and Syafaruddin, "A novel MPPT control of photovoltaic system under partial and rapidly fluctuating shadow conditions using differential evolution," in Proceedings of the 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA 2010), Penang, Malaysia, 2010, pp. 82-87.
[71] M. F. N. Tajuddin and Z. S. S. M. Ayob, "Tracking of maximum power point in partial shading condition using differential evolution (DE)," in Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu Sabah, Malaysia, 2012, pp. 384-389.
[72] L. L. Jiang, D. L. Maskell, and J. C. Patra, "A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions," Energy and Buildings, vol. 58, pp. 227-236, Mar. 2013.
[73] S. Roy Chowdhury and H. Saha, "Maximum power point tracking of partially shaded solar photovoltaic arrays," Solar Energy Materials and Solar Cells, vol. 94, no. 9, pp. 1441-1447, May. 2010.
[74] L. R. Chen, C. H. Tsai, Y. L. Lin, and Y. S. Lai, "A biological swarm chasing algorithm for tracking the PV maximum power point," IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 484-493, Jun. 2010.
[75] M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, "Maximum power point tracking of multiple photovoltaic arrays a PSO approach," IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 1, pp. 367-380, Jan. 2011.
[76] K. Ishaque, Z. Salam, A. Shamsudin, and M. Amjad, "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Applied Energy, vol. 99, pp. 414-422, Jun. 2012.
[77] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, "An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
[78] Y. H. Liu, S. C. Huang, J. W. Huang, and W. C. Liang, "A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions," IEEE Transactions on Energy Conversion, vol. 27, no. 4, pp. 1027-1035, Dec. 2012.
[79] K. Ishaque and Z. Salam, "A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition," IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3195-3206, Aug. 2013.
[80] a. Shi, W. Zhang, Y. Zhang, F. Xue, and T. Yang, "MPPT for PV systems based on a dormant PSO algorithm," Electric Power Systems Research, vol. 123, pp. 100-107, Feb. 2015.
[81] T. Kamejimal, V. Phimmasone, Y. Kondol, and M. Miyatake, "The optimization of control parameters of PSO based MPPT for photovoltaics," in Proceedings of the 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), Singapore, 2011, pp. 881-883.
[82] V. Phimmasone, Y. Kondo, T. Kamejima, and M. Miyatake, "Verification of efficacy of the improved PSO-based MPPT controlling multiple photovoltaic arrays," in Proceedings of the 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), Singapore, 2011, pp. 1015-1019.
[83] F. Keyrouz and S. Georges, "Efficient multidimensional maximum power point tracking using Bayesian fusion," in Proceedings of the 2011 2nd International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 2011, pp. 1-5.
[84] F. Keyrouz, M. Hamad, and S. Georges, "Bayesian fusion for maximum power output in hybrid wind-solar systems," in Proceedings of the 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aalborg, 2012, pp. 393-397.
[85] L. Zhou, Y. Chen, K. Guo, and F. Jia, "New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier chaotic search," IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1038-1048, Apr. 2011.
[86] Y. Zheng, C. Wei, and S. Lin, "A maximum power point tracking method based on tabu search for PV systems under partially shaded conditions," in Proceedings of the IET Conference on Renewable Power Generation (RPG 2011), Edinburgh, United Kingdom, 2011, pp. 1-4.
[87] J. Ahmed and Z. Salam, "A maximum power point tracking (MPPT) for PV system using Cuckoo search with partial shading capability," Applied Energy, vol. 119, pp. 118-130, Jan. 2014.
[88] A. S. Benyoucefa, A. Chouderb, K. Karaa, S. Silvestre, and O. A. Sahed, "Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions," Applied Soft Computing, vol. 32, pp. 38-48, Mar. 2015.
[89] K. Sundareswaran, P. Sankar, P. S. R. Nayak, S. P. Simon, and S. Palani, "Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony," IEEE Transactions on Sustainable Energy, vol. 6, no. 1, pp. 198-209, Jan. 2015.
[90] P. Lei, Y. Li, and J. E. Seem, "Sequential ESC-based global MPPT control for photovoltaic array with variable shading," IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 348-358, Jul. 2011.
[91] H. Heydari-doostabad, R. Keypour, M. R. Khalghani, and M. H. Khooban, "A new approach in MPPT for photovoltaic array based on extremum seeking control under uniform and non-uniform irradiances," Solar Energy, vol. 94, pp. 28-36, Jun. 2013.
[92] A. Bouilouta, A. Mellit, and S. A. Kalogirou, "New MPPT method for stand-alone photovoltaic systems operating under partially shaded conditions," Energy, vol. 55, pp. 1172-1185, Apr. 2013.
[93] A. R. Jha, Solar cell technology and application. New York: Auerbach, 2009, pp. 1-280.
[94] L. Fara and M. Yamaguch, Advanced solar cell materials, technology, modeling and simulation. Hershey, PA: Engineering Science Reference, 2012, pp. 1-336.
[95] R. A. Messenger and J. Ventre, Phtotovoltaic systems engineering second edition. London, UK: Taylor & Francis, 2003.
[96] F. M. Ishengoma and L. E. Norum, "Design and implementation of a digitally controlled stand-alone photovoltaic power supply," in Proceedings of the Norwegian University for Science and Technology, Trondheim, Norway, 2002, pp. 1-5.
[97] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, "A variable step size INC MPPT method for PV systems," IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, Jul. 2008.
[98] QiangMei, M. Shan, L. Liu, and J. M. Guerrero, "A novel improved variable step-size incremental-resistance MPPT method for PV systems," IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2427-2434, Jun. 2011.
[99] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, "High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids," IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1010-1021, Apr. 2011.
[100] E. M. Ahmed and M. Shoyama, "Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems," Journal of Power Electronics, vol. 11, no. 2, pp. 218-227, Mar. 2011.
[101] Y. Jiang, J. A. A. Qahouq, and T. A. Haskew, "Adaptive step size with adaptive-perturbation-frequency digital MPPT controller for a single-sensor photovoltaic solar system," IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3195-3205, Jul. 2013.
[102] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics second edition. New York: Springer, 2001, pp. 1-883.
[103] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics converters, applications, and design second edition. New York: John Wiley & Sons. Inc., 1989, pp. 1-802.
[104] Microship Technology Inc., "dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Data Sheet," Available at: http://www.microchip.com.
[105] Microship Technology Inc., "dsPIC30F/33F programmer's reference manual," Available at: http://www.microchip.com.
[106] S. Buso and P. Mattavelli, Digital control in power electronics. Italy: Morgan & Claypool, 2006.
[107] S. T. Karris, Signals and systems with MATLAB® applications. Fremont, California: Orchard, 2003.

無法下載圖示 全文公開日期 2020/07/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE