簡易檢索 / 詳目顯示

研究生: 黃騰慶
Teng-Ching Huang
論文名稱: 使用小波分解之可抑制光源變化的非接觸式心率量測
Illumination Variation-Resistant Contactless Pulse Rate Measurement Using Wavelet Decomposition
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 呂政修
Jenq-Shiou Leu
陳永耀
Yung-Yai Chen
林敬舜
Ching-Shun Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 遠距光體積變化描述術光源變化離散小波轉換智慧型手機非接觸式心率量測
外文關鍵詞: Remote photoplethysmography, Illumination variation, Discrete wavelet transform, Discrete wavelet transform, Non-contact measurement
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來非接觸式生理訊號量測呈現蓬勃發展的趨勢,儼然漸漸地成為了社會大眾用於評估個體健康的重要方法,其中心率的參數是最常作為個人健康的重要指標。在傳統的生理訊號檢測方法,可能會導致使用者分心或不適。相反的,透過遠距離非接觸式脈搏量測可以在不干擾使用者的情況下進行心率的量測。
    根據過往的研究中,基於影像的非接觸式脈搏量測需要在良好的環境進行量測,以避免移動雜訊與光源雜訊 所產生的誤差,但在現實的環境中處理因運動或光源變化所產生的干擾是無可避免的。本論文提出了一套降低光源變化干擾的演算法,比起過往的研究,在光源變化下更容易準確的量測到心率。根據實驗結果,在固定頻率光源變化環境下,本論文的平均絕對誤差(Mean Absolute Error, MAE)與均方根誤差(Root Mean Square Error, RMSE)分別為3.35 bpm與4.47 bpm,Success Rate-5/10的平均分別為0.83/0.91。以影片作為非固定頻率光源變化時,本論文的平均絕對誤差(Mean Absolute Error, MAE)與均方根誤差(Root Mean Square Error, RMSE)分別為1.26 bpm與1.71 bpm,Success Rate-5/10的平均分別為0.96/0.98。


    In recent years, non-contact measurement of physiological signals has been developed vigorously and become a powerful method to evaluate personal health, and the heart rate is usually considered as an important indicator. The traditional methods for detecting physiological signals may make the user distracted or uncomfortable, while the non-contact method can measure the heart rate without interfering the user.
    According to previous research, image-based and non-contact pulse rate measurement needs to be conducted in a good environment to avoid errors caused by movement artifacts and light source artifacts. However, in a real environment, dealing with interferences from movement or light source changes is inevitable. This thesis proposes an algorithm to reduce the interference of light source changes. Compared with previous studies, it provides higher accuracy of pulse rate measurement as light source changes. According to the experimental results, under the environment of fixed frequency light source, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of this thesis are 3.35 bpm and 4.47 bpm, respectively. The average of Success Rate-5/10 is 0.83/0.91 respectively. When under the environment as a non-fixed frequency light source, the MAE and RMSE of this paper are 1.26 bpm and 1.71 bpm, respectively. The averages of Success Rate-5/10 are 0.96/0.98 respectively.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、 緒論 1 1.1 動機與目的 1 1.2 文獻探討 2 1.3 相關論文比較 3 1.4 論文架構 6 第二章、 研究背景 7 2.1 rPPG定義與原理 7 2.2 非接觸式脈搏量測雜訊來源 9 2.2.1 移動雜訊 9 2.2.2 光源雜訊 9 2.3 臉部偵測 9 2.4 人臉追蹤 10 第三章、 研究方法 12 3.1 系統介紹 12 3.2 ROI偵測、追蹤及訊號復原 13 3.2.1 臉部偵測 & ROI追蹤 13 3.2.2 ROI訊號擷取 14 3.2.3 CHROM演算法 15 3.2 時域rPPG心率計算 16 3.2.1 移動平均與過零點偵測 16 3.3 頻域心率計算 18 3.3.1 離散小波轉換 18 3.3.2 離散小波轉換輸出頻道選擇 24 3.3.3 快速傅立葉轉換與自相關函數 25 3.3.4 頻率域心率選擇演算法 26 3.4 時頻選擇 30 3.5 使用者介面 31 第四章、 實驗方法與結果討論 32 4.1 實驗流程 32 4.2 實驗設計與結果 34 4.2.1 實驗驗證 34 4.2.2 實驗一 35 4.2.3 實驗二 42 4.3 結果討論 44 4.3.1 與相關論文之結果比較 49 4.3.2 正規化範圍對於心率準確度的影響 51 第五章、 結論與未來展望 53 參考文獻 54

    [1] 內政部警政署, “A1類道路交通事故-按肇事原因分類,” [Online]. Available: http://www.npa.gov.tw.
    [2] 衛生福利部統計處, “死因統計,” [Online]. Available: https://dep.mohw.gov.tw/DOS/np-1775-113.html.
    [3] 台大醫院臨床試驗中心, “醫學統計諮詢服務,” [Online]. Available: https://www.ntuh.gov.tw/NCTRC/Fpage.action?muid=2942&fid=2768.
    [4] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express, vol. 16, no. 26, p. 21434, 2008
    [5] M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 7–11, 2011.
    [6] L. Feng, L. M. Po, X. Xu, Y. Li, and R. Ma, “Motion-resistant remote imaging photoplethysmography based on the optical properties of skin,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 5, pp. 879–891, 2015.
    [7] G. de Haan and V. Jeanne, “Robust pulse rate from chrominance-based rPPG,” IEEE Trans. Biomed. Eng., vol. 60, no. 10, pp. 2878–2886, 2013.
    [8] W. Wang, S. Stuijk, and G. de Haan, “Exploiting spatial redundancy of image sensor for motion robust rPPG,” IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 415–425, Feb 2015.
    [9] H. Ghanadian, M. Ghodratigohar, and H. Al Osman, “A Machine Learning Method to Improve Non-Contact Heart Rate Monitoring Using an RGB Camera,” IEEE Access, vol. 6, pp. 57085–57094, 2018.
    [10] M. Ghodratigohar, H. Ghanadian, and H. Al Osman, “A Remote Respiration Rate Measurement Method for Non-Stationary Subjects Using CEEMDAN and Machine Learning,” IEEE Sens. J., vol. 20, no. 3, pp. 1400–1410, 2020.
    [11] X. Liu, X. Yang, J. Jin, and J. Li, “Self-adaptive signal separation for non-contact heart rate estimation from facial video in realistic environments,” Physiol. Meas., vol. 39, no. 6, 2018.
    [12] M. Kumar, A. Veeraraghavan, and A. Sabharwal, “DistancePPG: Robust non-contact vital signs monitoring using a camera,” Biomed. Opt. Express, vol. 6, no. 5, p. 1565, 2015.
    [13] R. M. Fouad, O. A. Omer, A. M. Ali, and M. H. Aly, “Refining ROI selection for real-time remote photoplethysmography using adaptive skin detection,” no. February, pp. 2–4, 2019.
    [14] R. M. Fouad, O. A. Omer, and M. H. Aly, “Optimizing Remote Photoplethysmography Using Adaptive Skin Segmentation for Real-Time Heart Rate Monitoring,” IEEE Access, vol. 7, pp. 76513–76528, 2019.
    [15] X. Li, J. Chen, G. Zhao, and M. Pietikäinen, “Remote heart rate measurement from face videos under realistic situations,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4264–4271, 2014.
    [16] D. Lee, J. Kim, S. Kwon, and K. Park, “Heart rate estimation from facial photoplethysmography during dynamic illuminance changes,” in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, pp. 2758–2761, 2015.
    [17] K. Y. Lin, D. Y. Chen, and W. J. Tsai, “Face-Based Heart Rate Signal Decomposition and Evaluation Using Multiple Linear Regression,” IEEE Sens. J., vol. 16, no. 5, pp. 1351–1360, 2016.
    [18] L. Xu, J. Cheng, and X. Chen, “Illumination variation interference suppression in remote PPG using PLS and MEMD,” Electron. Lett., vol. 53, no. 4, pp. 216–218, 2017.
    [19] J. Cheng, X. Chen, L. Xu, and Z. J. Wang, “Illumination Variation-Resistant Video-Based Heart Rate Measurement Using Joint Blind Source Separation and Ensemble Empirical Mode Decomposition,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 5, pp. 1422–1433, 2017.
    [20] B. F. Wu, Y. W. Chu, P. W. Huang, and M. L. Chung, “Neural Network Based Luminance Variation Resistant Remote-Photoplethysmography for Driver’s Heart Rate Monitoring,” IEEE Access, vol. 7, pp. 57210–57225, 2019.
    [21] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electron. , vol. 3, no. 2, pp. 282–302, 2014.
    [22] K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: A further step toward noncontact pulse oximetry,” Rev. Sci. Instrum., vol. 78, no. 4, 2007.
    [23] 李明偉, “基於智慧型手機之YUV影像之非接觸式活體皮膚辨識方法,” 國立台灣科技大學, 2018.
    [24] Y. C. Lin and Y. H. Lin, “Step Count and Pulse Rate Detection Based on the Contactless Image Measurement Method,” IEEE Trans. Multimed., vol. 20, no. 8, pp. 2223–2231, 2018.
    [25] 呂明紘, “基於影像之非接觸心率與體溫量測系統,” 國立台灣科技大學, 2019.
    [26] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, 2001.
    [27] B. D. Lucas and T. Kanade, “Iterative Image Registration Technique With an Application To Stereo Vision.,” vol. 2, no. September, pp. 674–679, 1981.
    [28] J. G. Allen, R. Y. D. Xu, and J. S. Jin, “Object Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces,” Reproduction, vol. 36, pp. 3–7, 2006.
    [29] J. Shi and C. Tomasi, “Good Features,” Image (Rochester, N.Y.), pp. 593–600, 1994.
    [30] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 583–596, 2015.
    [31] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” Fundam. Pap. Wavelet Theory, vol. I, no. 7, pp. 494–513, 2009.
    [32] C. Wang, T. Pun, and G. Chanel, “A comparative survey of methods for remote heart rate detection from frontal face videos,” Front. Bioeng. Biotechnol., vol. 6, no. MAY, pp. 1–16, 2018.
    [33] “Polar H7” [Online]. Available: https://www.polar.com/tw-zh/products/accessories/H7_heart_rate_sensor.
    [34] B. F. Wu, P. W. Huang, C. H. Lin, M. L. Chung, T. Y. Tsou, and Y. L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access, vol. 6, pp. 21621–21634, 2018.
    [35] "Samsung Galaxy S9+." [Online] Available: https://www.sumsung.com/tw/smartphones/galaxy-s9/specs/.
    [36] W. Wang, A. C. den Brinker, S. Stuijk, and G. de Haan, ‘‘Algorithmic principles of remote PPG,’’ IEEE Trans. Biomed. Eng., vol. 64, no. 99, pp. 1479–1491, Jul. 2017.

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE