簡易檢索 / 詳目顯示

研究生: 蕭逸
Yi Hsiao
論文名稱: 應用田口方法製備WO3/TNA/Ti電極於光-電芬頓系統之研究
Application of Taguchi Method to Fabricate the WO3/TNA/Ti Electrode in Photoelectro Fenton System
指導教授: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
口試委員: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 光-電芬頓陽極處理法二氧化鈦奈米管狀結構三氧化鎢田口方法
外文關鍵詞: Photoelectro Fenton, Anodization, titanium dioxide nanotube array, tungsten trioxide, Taguchi method
相關次數: 點閱:229下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電極材料種類與性質對光-電芬頓系統之運行效率有顯著影響。本研究選用純鈦金屬(Ti)作為電極基材,以陽極處理法建構二氧化鈦奈米管狀結構(TiO2 nanotube array, TNA),再經退火處理及透過電沉積技術複合三氧化鎢於基材表面(WO3/TNA/Ti)完成電極製備,冀能優化Ti電極之光催化性能。過程並佐以田口方法(Taguchi method)分別針對陽極處理電壓、陽極處理時間及電沉積時間進行性能測試。
結果顯示,陽極處理電壓40 V、陽極處理時間5分鐘及電沉積時間15分鐘所製備之WO3/TNA/Ti電極,其能帶隙(Eg)減為2.87 eV,可提高紫外光和可見光照射下之光催化性能。於光-電芬頓系統進行30分鐘之Rhodamine B染料降解,其降解率為81.32 %,而降解反應常數為5.59 × 10^-2 min^-1,分別為未修飾Ti電極之2.54倍及3.43倍。綜上,WO3/TNA/Ti電極可促使光-電芬頓系統運行效率與電極光催化性能獲得提升。


The types and properties of the electrode material bring in a significant effect for efficiency of the photoelectro Fenton system. In this study, pure titanium (Ti) was used as the substrate. The titanium dioxide nanotube array (TNA) was constructed by anodization method. After annealing, the electrodeposition technique was used to composite tungsten trioxide (WO3) on the surface of substrate. To optimize photocatalytic performance of the Ti electrode, the Taguchi method was used to test the property of anodization voltage, anodization time and electrodeposition time.
The results show that WO3/TNA/Ti electrode prepared with anodization voltage of 40 V, anodization time of 5 minutes and electrodeposition time of 15 minutes can let the bandgap energy (Eg) reduced to 2.87 eV. This process can improve the photocatalytic performance under ultraviolet light and visible light illumination. The degradation of Rhodamine B dye in the photoelectro Fenton system for 30 minutes, the degradation rate is 81.32 % and the reaction coefficient is 5.59 × 10-2 min-1, which are 2.54 and 3.43 times then Ti electrode, respectively. In summary, the WO3/TNA/Ti electrode can promote the efficiency of the photoelectro Fenton system and photocatalytic performance for electrode.

摘要 Abstract 謝誌 目錄 圖目錄 表目錄 第一章 前言 第二章 文獻回顧 2.1 高級氧化程序 2.2 芬頓法 2.3 光-電芬頓法 2.3.1 電芬頓法 2.3.2 光催化法 2.4 電極材料選用 2.4.1 二氧化鈦 2.4.2 陽極氧化處理法 2.4.3 異質結構 2.5 田口方法 第三章 實驗方法 3.1 實驗流程圖 3.2 實驗材料 3.2.1 電極製備材料及藥品 3.2.2 實驗場域材料及藥品 3.2.3 實驗儀器設備 3.3 電極製備流程 3.3.1 田口方法實驗設計 3.3.2 Ti電極前處理 3.3.3 陽極處理法製備TNA流程 3.3.4 電沉積WO3複合TNA流程 3.4 WO3/TNA/Ti電極材料形貌及特徵 3.4.1 掃描式電子顯微鏡 3.4.2 能量散射X射線分析儀 3.4.3 X光繞射分析儀 3.5 WO3/TNA/Ti電極性能分析 3.5.1 紫外光-可見光光譜法 3.5.2 動電位極化法 3.6 WO3/TNA/Ti電極於光-電芬頓系統之性能檢測 3.6.1 線性掃描伏安法 3.6.2 光-電芬頓場域系統架設 第四章 結果與討論 4.1 Ti電極於光-電芬頓系統之性能評估 4.1.1 Ti電極之操作電位評估 4.1.2 Ti電極於光-電芬頓系統之性能測試 4.2 WO3/TNA/Ti電極之田口方法系統參數最佳化 4.2.1 陽極處理之控制因子與水準 4.2.2 電沉積WO3之控制因子與水準 4.2.3 田口方法L9降解實驗 4.2.4 田口方法顯著因子之作用 4.2.5 電極表徵分析 4.3 WO3/TNA/Ti之電極性能評估 4.3.1 光學特性量測 4.3.2 抗腐蝕性能試驗 4.4 WO3/TNA/Ti電極於光-電芬頓系統之性能檢測 4.4.1 光-電化學性能量測 4.4.2 光-電芬頓系統之效能分析 第五章 結論 第六章 未來研究方向 參考文獻

[1] P. V. Nidheesh and R. Gandhimathi, "Trends in electro-Fenton process for water and wastewater treatment: An overview," Desalination, Vol. 299, pp. 1-15, 2012.
[2] R. Sánchez-Tovar, E. Blasco-Tamarit, L. Ibañez-Arlandis, R. M. Fernández-Domene, G. Roselló-Márquez, and J. García-Antón, "Novel TiO2-WO3 self-ordered nanotubes used as photoanodes: Influence of Na2WO4 and H2O2 concentration during electrodeposition," Surface and Coatings Technology, Vol. 415, p. 127124, 2021.
[3] M. Faraji and A. Abedini, "Pulse reverse co-electrodeposition of polyaniline-tungsten oxide nanocomposite onto TiO2 nanotubes/Ti plate and evaluation of plate's photocatalytic activity," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 361, pp. 12-18, 2018.
[4] K. Arifin, R. M. Yunus, L. J. Minggu, and M. B. Kassim, "Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review," International Journal of Hydrogen Energy, Vol. 46, No. 7, pp. 4998-5024, 2021.
[5] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, and D. D. Dionysiou, "A review on the visible light active titanium dioxide photocatalysts for environmental applications," Applied Catalysis B: Environmental, Vol. 125, pp. 331-349, 2012.

[6] A. Thakur, P. Kumar, S. Bagchi, R. K. Sinha, and P. Devi, "Green synthesized plasmonic nanostructure decorated TiO2 nanofibers for photoelectrochemical hydrogen production," Solar Energy, Vol. 193, pp. 715-723, 2019.
[7] E. L. Yang, J. J. Shi, H. C. Liang, and W. K. Cheuk, "Coaxial WO3/TiO2 nanotubes/nanorods with high visible light activity for the photodegradation of 2,3-dichlorophenol," Chemical Engineering Journal, Vol. 174, No. 2, pp. 539-545, 2011.
[8] K. Indira, U. K. Mudali, T. Nishimura, and N. Rajendran, "A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior and Biomedical Applications," Journal of Bio- and Tribo-Corrosion, Vol. 1, No. 4, p. 28, 2015.
[9] J. Georgieva, E. Valova, S. Armyanov, N. Philippidis, I. Poulios, and S. Sotiropoulos, "Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: A short review with emphasis to TiO2-WO3 photoanodes," Journal of Hazardous Materials, Vol. 211-212, pp. 30-46, 2012.
[10] Q. Wang, W. Zhang, X. Hu, L. Xu, G. Chen, and X. Li, "Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light," Journal of Water Process Engineering, Vol. 40, p. 101943, 2021.

[11] S. Caramori, V. Cristino, L. Meda, A. Tacca, R. Argazzi, and C. A. Bignozzi, "Efficient Anodically Grown WO3 for Photoelectrochemical Water Splitting," Energy Procedia, Vol. 22, pp. 127-136, 2012.
[12] M. M. Rhaman, S. Ganguli, S. Bera, S. B. Rawal, and A. K. Chakraborty, "Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway," Journal of Water Process Engineering, Vol. 36, p. 101256, 2020.
[13] 李輝煌,田口方法-品質設計的原理與實務第四版,高立圖書有限公司,2013。
[14] C. Amor, L. Marchão, M. S. Lucas, and J. A. Peres, "Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review," Water, Vol. 11, No. 2, p. 205, 2019.
[15] W. D. Oh, Z. Dong, and T. T. Lim, "Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects," Applied Catalysis B: Environmental, Vol. 194, pp. 169-201, 2016.
[16] L. Zhao, Z. R. Lin, X. H. Ma, and Y. H. Dong, "Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems," Chemical Engineering Journal, Vol. 352, pp. 343-351, 2018.

[17] V. R. Choudhary and P. Jana, "In situ generation of hydrogen peroxide from reaction of O2 with hydroxylamine from hydroxylammonium salt in neutral aqueous or non-aqueous medium using reusable Pd/Al2O3 catalyst," Catalysis Communications, Vol. 8, No. 11, pp. 1578-1582, 2007.
[18] Y. Liu and J. Wang, "Reduction of nitrate by zero valent iron (ZVI)-based materials: A review," Science of The Total Environment, Vol. 671, pp. 388-403, 2019.
[19] C. Trellu, N. Oturan, F. K. Keita, C. Fourdrin, Y. Pechaud, and M. A. Oturan, "Regeneration of Activated Carbon Fiber by the Electro-Fenton Process," Environmental Science & Technology, Vol. 52, No. 13, pp. 7450-7457, 2018.
[20] X. Li, Y. Wu, W. Zhu, F. Xue, Y. Qian, and C. Wang, "Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields," Electrochimica Acta, Vol. 220, pp. 276-284, 2016.
[21] W. Yang, N. Oturan, S. Raffy, M. Zhou, and M. A. Oturan, "Electrocatalytic generation of homogeneous and heterogeneous hydroxyl radicals for cold mineralization of anti-cancer drug Imatinib," Chemical Engineering Journal, Vol. 383, p. 123155, 2020.

[22] J. H. Shen, Z. W. Jiang, D. Q. Liao, and J. J. Horng, "Enhanced synergistic photocatalytic activity of TiO2/oxidant for azo dye degradation under simulated solar irradiation: A determination of product formation regularity by quantifying hydroxyl radical-reacted efficiency," Journal of Water Process Engineering, Vol. 40, p. 101893, 2021.
[23] K. A. Sultana, M. T. Islam, J. A. Silva, R. S. Turley, J. A. Hernandez-Viezcas, J. L. Gardea-Torresdey, and J. C. Noveron, "Sustainable synthesis of zinc oxide nanoparticles for photocatalytic degradation of organic pollutant and generation of hydroxyl radical," Journal of Molecular Liquids, Vol. 307, p. 112931, 2020.
[24] M. R. Al-Mamun, S. Kader, M. S. Islam, and M. Z. H. Khan, "Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review," Journal of Environmental Chemical Engineering, Vol. 7, No. 5, p. 103248, 2019.
[25] H. Fenton, "On a new reaction of tartaric acid," Chemistry News, Vol. 33, No. 190, p. 190, 1876.
[26] C. K. Duesterberg, S. E. Mylon, and T. D. Waite, "pH Effects on Iron-Catalyzed Oxidation using Fenton’s Reagent," Environmental Science & Technology, Vol. 42, No. 22, pp. 8522-8527, 2008.

[27] Z. Luo, J. Wang, Y. Song, X. Zheng, L. Qu, Z. Wu, and X. Wu, "Remediation of Phenanthrene Contaminated Soil by a Solid State Photo-Fenton Reagent Based on Mesoporous Magnetite/Carboxylate-Rich Carbon Composites and Its Phytotoxicity Evaluation," ACS Sustainable Chemistry & Engineering, Vol. 6, No. 10, pp. 13262-13275, 2018.
[28] K. Zhao, X. Quan, S. Chen, H. Yu, Y. Zhang, and H. Zhao, "Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater," Chemical Engineering Journal, Vol. 354, pp. 606-615, 2018.
[29] M. H. Zhang, H. Dong, L. Zhao, D. X. Wang, and D. Meng, "A review on Fenton process for organic wastewater treatment based on optimization perspective," Science of The Total Environment, Vol. 670, pp. 110-121, 2019.
[30] M. Muruganandham and M. Swaminathan, "Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology," Dyes and pigments, Vol. 63, No. 3, pp. 315-321, 2004.
[31] E. Mousset, Z. Wang, J. Hammaker, and O. Lefebvre, "Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater," Electrochimica Acta, Vol. 214, pp. 217-230, 2016.

[32] J. Meijide, P. S. M. Dunlop, M. Pazos, and M. A. Sanromán, "Heterogeneous Electro-Fenton as “Green” Technology for Pharmaceutical Removal: A Review," Catalysts, Vol. 11, No. 1, p. 85, 2021.
[33] S. Qiu, L. Yu, D. Tang, W. Ren, K. Chen, and J. Sun, "Rapidly Enhanced Electro-Fenton Efficiency by in Situ Electrochemistry-Activated Graphite Cathode," Industrial & Engineering Chemistry Research, Vol. 57, No. 14, pp. 4907-4915, 2018.
[34] Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, and J. Qiu, "Fe@ Fe2O3 core- shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system," The Journal of Physical Chemistry C, Vol. 111, No. 40, pp. 14799-14803, 2007.
[35] X. Yu, M. Zhou, G. Ren, and L. Ma, "A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton," Chemical Engineering Journal, Vol. 263, pp. 92-100, 2015.
[36] H. Zhao, L. Qian, X. Guan, D. Wu, and G. Zhao, "Continuous Bulk FeCuC Aerogel with Ultradispersed Metal Nanoparticles: An Efficient 3D Heterogeneous Electro-Fenton Cathode over a Wide Range of pH 3-9," Environmental Science & Technology, Vol. 50, No. 10, pp. 5225-5233, 2016.

[37] Y. Wang, Y. Liu, T. Liu, S. Song, X. Gui, H. Liu, and P. Tsiakaras, "Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode," Applied Catalysis B: Environmental, Vol. 156-157, pp. 1-7, 2014.
[38] H. Zhao and Q. Zhang, "Performance of electro-Fenton process coupling with microbial fuel cell for simultaneous removal of herbicide mesotrione," Bioresource Technology, Vol. 319, p. 124244, 2021.
[39] D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, and L. Yang, "Critical review of advanced oxidation processes in organic wastewater treatment," Chemosphere, Vol. 275, p. 130104, 2021.
[40] Z. Long, Q. Li, T. Wei, G. Zhang , and Z. Ren, "Historical development and prospects of photocatalysts for pollutant removal in water," Journal of Hazardous Materials, Vol. 395, p. 122599, 2020.
[41] E. Brillas, "A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton," Journal of the Brazilian Chemical Society, Vol. 25, No. 3, pp. 393-417, 2014.
[42] Q. Wang, S. Liang, G. Zhang, R. Su, C. Yang, P. Xu, and P. Wang, "Facile and rapid microwave-assisted preparation of Cu/Fe-AO-PAN fiber for PNP degradation in a photo-Fenton system under visible light irradiation," Separation and Purification Technology, Vol. 209, pp. 270-278, 2019.

[43] J. Y. Hwang, G. H. Moon, B. Kim, T. Tachikawa, T. Majima, S. Hong, K. Cho, W. Kim, and W. Choi, "Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile," Applied Catalysis B: Environmental, Vol. 286, p. 119905, 2021.
[44] S. Ray, J. A. Lalman, and N. Biswas, "Using the Box-Benkhen technique to statistically model phenol photocatalytic degradation by titanium dioxide nanoparticles," Chemical Engineering Journal, Vol. 150, No. 1, pp. 15-24, 2009.
[45] M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman, and W. M. A. W. Daud, "Application of doped photocatalysts for organic pollutant degradation - A review," Journal of Environmental Management, Vol. 198, pp. 78-94, 2017.
[46] K. Lee, A. Mazare, and P. Schmuki, "One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes," Chemical Reviews, Vol. 114, No. 19, pp. 9385-9454, 2014.
[47] J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, and L. Zou, "The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte," Journal of materials science, Vol. 43, No. 6, pp. 1880-1884, 2008.
[48] J. Wen, J. Xie, X. Chen, and X. Li, "A review on g-C3N4-based photocatalysts," Applied Surface Science, Vol. 391, pp. 72-123, 2017.

[49] C. Byrne, S. Dervin, D. Hermosilla, N. Merayo, Á. Blanco, S. Hinder, M. Harb, D. D. Dionysiou, and S. C. Pillai, "Solar light assisted photocatalytic degradation of 1,4-dioxane using high temperature stable anatase W-TiO2 nanocomposites," Catalysis Today, 2021.
[50] J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," Physica status solidi (b), Vol. 15, No. 2, pp. 627-637, 1966.
[51] E. Davis and N. Mott, "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors," Philosophical magazine, Vol. 22, No. 179, pp. 0903-0922, 1970.
[52] G. Wang, Q. Chen, Y. Liu, D. Ma, Y. Xin, X. Ma, and X. Zhang, "In situ synthesis of graphene/WO3 co-decorated TiO2 nanotube array photoelectrodes with enhanced photocatalytic activity and degradation mechanism for dimethyl phthalate," Chemical Engineering Journal, Vol. 337, pp. 322-332, 2018.
[53] Y. Xin, M. Gao, Y. Wang, and D. Ma, "Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes," Chemical Engineering Journal, Vol. 242, pp. 162-169, 2014.
[54] G. Divyapriya and P. V. Nidheesh, "Importance of Graphene in the Electro-Fenton Process," ACS Omega, Vol. 5, No. 10, pp. 4725-4732, 2020.

[55] J. Liang, Y. Zhang, C. Song, D. Tang, and J. Sun, "Double-potential electro-Fenton: A novel strategy coupling oxygen reduction reaction and Fe2+/Fe3+ recycling," Electrochemistry Communications, Vol. 94, pp. 55-58, 2018.
[56] S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen, X. Feng, and S. S. Mao, "Titanium dioxide nanostructures for photoelectrochemical applications," Progress in Materials Science, Vol. 98, pp. 299-385, 2018.
[57] P. Mazierski, M. Nischk, M. Gołkowska, W. Lisowski, M. Gazda, M. J. Winiarski, T. Klimczuk, and A. Zaleska-Medynska, "Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant," Applied Catalysis B: Environmental, Vol. 196, pp. 77-88, 2016.
[58] S. Liang, J. He, Z. Sun, Q. Liu, Y. Jiang, H. Cheng, B. He, Z. Xie, and S. Wei, "Improving Photoelectrochemical Water Splitting Activity of TiO2 Nanotube Arrays by Tuning Geometrical Parameters," The Journal of Physical Chemistry C, Vol. 116, No. 16, pp. 9049-9053, 2012.
[59] P. Acevedo-Peña, L. Lartundo-Rojas, and I. González, "Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes," Journal of Solid State Electrochemistry, Vol. 17, No. 11, pp. 2939-2947, 2013.

[60] V. M. Prida, E. Manova, V. Vega, M. Hernandez-Velez, P. Aranda, K. R. Pirota, M. Vázquez, and E. Ruiz-Hitzky, "Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays," Journal of Magnetism and Magnetic Materials, Vol. 316, No. 2, pp. 110-113, 2007.
[61] C. H. Chang, H. C. Lee, C. C. Chen, Y. H. Wu, Y. M. Hsu, Y. P. Chang, T. I. Yang, and H. W. Fang, "A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells," Journal of Biomedical Materials Research Part A, Vol. 100, No. 7, pp. 1687-1695, 2012.
[62] H. Yoo, M. Kim, Y. T. Kim, K. Lee, and J. Choi, "Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo) electrochemical reactions," Catalysts, Vol. 8, No. 11, p. 555, 2018.
[63] A. S. Martins, P. J. M. Cordeiro-Junior, L. Nuñez, and M. R. de Vasconcelos Lanza, "A simple method for the electrodeposition of WO3 in TiO2 nanotubes: influence of the amount of tungsten on photoelectrocatalytic activity," Electrocatalysis, Vol. 8, No. 2, pp. 115-121, 2017.
[64] C. B. D. Marien, T. Cottineau, D. Robert, and P. Drogui, "TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat," Applied Catalysis B: Environmental, Vol. 194, pp. 1-6, 2016.

[65] W. Choi, S. J. Hong, Y. S. Chang, and Y. Cho, "Photocatalytic Degradation of Polychlorinated Dibenzo-p-dioxins on TiO2 Film under UV or Solar Light Irradiation," Environmental Science & Technology, Vol. 34, No. 22, pp. 4810-4815, 2000.
[66] D. Gu, Y. C. Hagedorn, W. Meiners, G. Meng, R. J. S. Batista, K. Wissenbach, and R. Poprawe, "Densification behavior, microstructure evolution and wear performance of selective laser melting processed commercially pure titanium," Acta Materialia, Vol. 60, No. 9, pp. 3849-3860, 2012.
[67] C. Guo, K. Wang, S. Hou, L. Wan, J. Lv, Y. Zhang, X. Qu, S. Chen, and J. Xu, "H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes," Journal of Hazardous Materials, Vol. 323, pp. 710-718, 2017.
[68] T. Choi, J. S. Kim, and J. H. Kim, "Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity," Advanced Powder Technology, Vol. 27, No. 2, pp. 347-353, 2016.
[69] H. Dhiflaoui, K. Khlifi, N. Barhoumi, and A. Ben Cheikh Larbi, "Effect of voltage on microstructure and its influence on corrosion and tribological properties of TiO2 coatings," Journal of Materials Research and Technology, Vol. 9, No. 3, pp. 5293-5303, 2020.
[70] W. Smith and Y. P. Zhao, "Superior photocatalytic performance by vertically aligned core-shell TiO2/WO3 nanorod arrays," Catalysis Communications, Vol. 10, No. 7, pp. 1117-1121, 2009.
[71] G. Wang, Q. Chen, Y. Xin, Y. Liu, Z. Zang, C. Hu, and B. Zhang, "Construction of graphene-WO3/TiO2 nanotube array photoelectrodes and its enhanced performance for photocatalytic degradation of dimethyl phthalate," Electrochimica Acta, Vol. 222, pp. 1903-1913, 2016.
[72] Y. Xin, H. Liu, Y. Liu, D. Ma, and Q. Chen, "Composition and photoelectrochemical properties of WO3/TNAs photoelectrodes fabricated by in situ electrochemical method," Electrochimica Acta, Vol. 104, pp. 308-313, 2013.
[73] M. K. Otoufi, M. Ranjbar, A. Kermanpur, N. Taghavinia, M. Minbashi, M. Forouzandeh, and F. Ebadi, "Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers," Solar Energy, Vol. 208, pp. 697-707, 2020.
[74] A. Hariri, N. Gilani, and J. V. Pasikhani, "Promoting the photo-induced charge separation and photoelectrocatalytic hydrogen generation: Z-scheme configuration of WO3 quantum nanodots-decorated immobilized Ti/TiO2 nanorods," Journal of Alloys and Compounds, Vol. 871, p. 159528, 2021.
[75] Z. DohĿeviĿ-MitroviĿ, S. StojadinoviĿ, L. Lozzi, S. AškrabiĿ, M. RosiĿ, N. TomiĿ, N. PaunoviĿ, S. LazoviĿ, M. G. NikoliĿ, and S. Santucci, "WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties," Materials Research Bulletin, Vol. 83, pp. 217-224, 2016.

[76] Y. Liang, Z. C. Guan, H. P. Wang, and R. G. Du, "Enhanced photoelectrochemical anticorrosion performance of WO3/TiO2 nanotube composite films formed by anodization and electrodeposition," Electrochemistry Communications, Vol. 77, pp. 120-123, 2017.
[77] İ. Ç. Davaslıoğlu, K. Volkan Özdokur, S. Koçak, Ç. Çırak, B. Çağlar, B. B. Çırak, and F. Nil Ertaş, "WO3 decorated TiO2 nanotube array electrode: Preparation, characterization and superior photoelectrochemical performance for rhodamine B dye degradation," Journal of Molecular Structure, Vol. 1241, p. 130673, 2021.

QR CODE