簡易檢索 / 詳目顯示

研究生: 吳伯恩
PO-EN WU
論文名稱: 摻碳氮化硼/奈米鑽石複合奈米材料之合成與特性分析
Synthesis and Properties of the Boron Carbon Nitride with Ultra-nanocrystalline Diamond Hybrid Nanomaterials
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyankay Jou
張立
Chang Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 118
中文關鍵詞: 摻碳氮化硼超奈米鑽石氣體感測器超級電容六方氮化硼
外文關鍵詞: BCN, Ultra-nanocrystalline diamond, Gas sensor, Supercapacitor, h-BN
相關次數: 點閱:380下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 ix 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻探討 5 2.1 六方晶相氮化硼(h-BN)簡介 5 2.1.1 六方晶相氮化硼(h-BN)概述 5 2.1.2 氮化硼之型態與結構 6 2.2 摻碳氮化硼(BCN)簡介 7 2.2.1 摻碳氮化硼(BCN)概述 7 2.2.2 碳氮化硼之型態與結構 8 2.3 超奈米鑽石(UNCD)簡介 9 2.4 超級電容器之種類與機制 11 2.5 氣體感測器(Gas Sensor)簡介 18 第三章 實驗方法 22 3.1 實驗設計與流程 22 3.1.1 六方晶相氮化硼粉末旋塗於基板實驗流程 22 3.1.2 微波電漿輔助化學氣相沉積法 22 3.1.3 生長六方晶相摻碳氮化硼實驗流程 24 3.1.4 氮化硼與鑽石粉末旋塗於基板實驗流程 25 3.1.5 生長摻碳氮化硼與超奈米鑽石實驗流程 25 3.2 製備所需材料介紹 26 3.3 磁控薄膜濺鍍系統濺鍍鉑指叉狀電極 27 3.4 儀器設備與材料分析方法 28 3.4.1 場發射槍穿透式電子顯微鏡(300kV)(FEG-TEM ) 28 3.4.2 場發射掃描式電子顯微鏡 (Scanning Electron Microscope, FE-SEM) 29 3.4.3 能量分散光譜儀(Energy Dispersive Spectrometer, EDS) 30 3.4.4 X射線繞射儀 (X-ray Diffraction, XRD) 30 3.4.5 拉曼光譜儀(Raman spectrum) 32 3.4.6 電化學分析儀(Electrochemical Workstation) 32 3.4.7 真空量測系統(Gas Sensor, GS) 33 第四章 摻碳氮化硼/奈米鑽石(BCN-UNCD)複合奈米材料之特性分析 35 4.1 六方晶相氮化硼 (h-BN)之特性分析 35 4.1.1 六方晶相氮化硼(h-BN)表面型態分析 36 4.1.2 六方晶相氮化硼(h-BN)拉曼光譜儀分析 38 4.1.3 六方晶相氮化硼(h-BN)X射線繞射儀分析 40 4.2 六方晶相摻碳氮化硼 (h-BCN)之特性分析 41 4.2.1 六方晶相摻碳氮化硼(h-BCN)表面型態分析 42 4.2.2 六方晶相摻碳氮化硼(h-BCN)X射線繞射儀分析 43 4.3 六方晶相氮化硼摻雜鑽石粉 (h-BN+Diamond)之特性分析 44 4.3.1 六方晶相氮化硼摻雜鑽石粉 (h-BN+Diamond)之表面型態分析 45 4.3.2 六方晶相氮化硼摻雜鑽石粉 (h-BN+Diamond) 拉曼光譜儀分析 48 4.4 摻雜碳氮化硼複合奈米鑽石(BCN-UNCD)結構之特性分析 50 4.4.1 摻雜碳氮化硼複合奈米鑽石(BCN-UNCD)表面型態分析 51 4.4.2 摻雜碳氮化硼複合奈米鑽石(BCN-UNCD)X光繞射儀分析 52 4.4.3 摻雜碳氮化硼複合奈米鑽石 (BCN-UNCD) EDS分析 55 4.5 以稀釋溶液生長摻雜碳氮化硼複合奈米鑽石 (BCND-UNCD)結構之特性分析 59 4.5.1 以稀釋溶液生長摻雜碳氮化硼複合奈米鑽石 (BCND-UNCD)表面型態分析 60 4.5.2 以稀釋溶液生長摻雜碳氮化硼複合奈米鑽石 (BCND/UNCD)拉曼光譜分析 64 4.5.3 以稀釋溶液生長摻雜碳氮化硼複合奈米鑽石 (BCND-UNCD) XRD分析 66 4.6 製程前後及不同參數對於生長摻碳氮化硼複合奈米鑽石造成之特性差異分析 68 4.6.1 經微波電漿主製程處理前後之表面特性差異 68 4.6.2 經微波電漿主製程處理前後之拉曼特性差異 70 4.6.3 經微波電漿主製程處理前後之XRD特性差異 73 4.6.4 不同溶液濃度參數不同之表面特性差異 79 4.6.5 不同溶液濃度參數不同之XRD特性差異 80 第五章 摻碳氮化硼/奈米鑽石(BCN-UNCD) 複合奈米材料之應用 81 5.1 摻碳氮化硼複合奈米鑽石結構之超級電容特性 81 5.1.1 CV results : 82 5.1.2 GCD result 85 5.2 摻碳氮化硼複合奈米鑽石結構之氣體感測響應 88 5.2.1 BCN-UNCD以及BCND-UNCD分別對H2之響應 88 5.2.2 BCN-UNCD以及BCND-UNCD分別對NH3之響應 96 5.3 結論 103 6 第六章 結論與未來展望 109 6.1 結論 109 6.2 未來展望 111

[1].S.H.Wang, T.Wang, Corrosion-Resistant Functional Diamond Coatings for Reliable Interfacing of Liquid Metals with Solid Metals, ACS Applied Materials & Interfaces, 36 (2020), 40891-40900.
https://pubs.acs.org/doi/abs/10.1021/acsami.0c09428
[2].R. L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev., 108 (2008), 2646-2687.
https://doi.org/10.1021/cr068076m
[3].S.T. Lee, Z. Lin, CVD diamond films: nucleation and growth, Materials Science and Engineering: R: Reports, 25 (1999), 123-154.
https://www.sciencedirect.com/science/article/pii/S0927796X99000030
[4].S. Yu, N. Yang, Electrochemical Supercapacitors from Diamond, The Journal of Physical Chemistry C, 119 (2015), 18918-18926.
https://pubs.acs.org/doi/full/10.1021/acs.jpcc.5b04719
[5].Sachin Kumar, Ghuzanfar Saeed, Ling Zhu, Kwun Nam Hui, Nam Hoon Kim, Joong Hee Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review, Chemical Engineering Journal, 40 (2021), 126352.
https://doi.org/10.1016/j.cej.2020.126352
[6].M. Yu, Y. Lu, H. Zheng and X. Lu, New Insights into the Operating Voltage of Aqueous Supercapacitors, Chem.–Eur. J., 24 (2018), 3639-3649.
https://doi.org/10.1002/chem.201704420
[7].Kui-Qing Peng, Xin Wanga, Silicon nanowires for advanced energy conversion and storage, nanotoday, 8 (2013), 75-97.
https://www.sciencedirect.com/science/article/pii/S1748013212001466
[8].Huang Ruia, Fan Xing, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Applied Physics Letters, 95 (2013), 133119.
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349662178&origin=inward&txGid=62a87fc5bf6a68066be7622bfb4a957c
[9].Kelzenberg Michael D, Boettcher Shannon W, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nature Materials, 9 (2010), 239 – 244.
https://www.scopus.com/record/display.uri?eid=2-s2.0-77249164255&origin=inward&txGid=6a88c1526b81bc00e595cb038b75430a
[10].R. B. Weisman, New Frontiers in Nanocarbons, Electrochem. Soc. Interface, 22 (2013), 49.
https://doi.org/10.1149/2.F02133if
[11].R. L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev., 108 (2008), 2646-2687.
https://doi.org/10.1021/cr068076m
[12].S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991), 56-58.
https://doi.org/10.1038/354056a0
[13].H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162-163.
https://doi.org/10.1038/318162a0
[14].Patrick T.Moseleya, David A.J.Rand, Understanding the functions of carbon in the negative active-mass of the lead–acid battery: A review of progress, Journal of Energy Storage, 19 (2018), 272-290.
https://www.sciencedirect.com/science/article/pii/S2352152X18303955
[15].Nianjun Yang, Siyu Yu, Julie V. Macpherson, Yasuaki Einaga, Hongying Zhao, Guohua Zhao, Greg M. Swain and Xin Jiang, Conductive diamond: synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 48 (2019), 157-204.
https://doi.org/10.1039/C7CS00757D
[16].Seiichiro Matsumoto, Yoichiro Sato, Mutsukazu Kamo and Nobuo Setaka, Vapor deposition of diamond particles from methane, Japanese Journal of Applied Physics, 21 (1982), L183.
https://doi.org/10.1143/JJAP.21.L183
[17].C. R. Lin, D. H. Wei, M. K. BenDao, W. E. Chen, T. Y. Liu, Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film, International Journal of Photoenergy, 2014 (2014), 492152.
https://doi.org/10.1155/2014/492152
[18].Arora, S. and V. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness, Thin Solid Films, 515(4) (2006), 1963-1969.
https://doi.org/10.1016/j.tsf.2006.08.002
[19].O.A. Williamsab, M. Nesladek, Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, 17 (2008), 1080-1088.
https://www.sciencedirect.com/science/article/pii/S0925963508001453
[20].S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, Emission characteristic of diamond-tip FEA fabricated by transfer mold technique, IEEE, 526 (1996), 526-529.
https://doi.org/10.1109/IVMC.1996.601879
[21].Rani, R., Kumar, N., Kozakov, A.T., Googlev, K.A. and Sankaran, K.J., Superlubrication Properties of Ultra-Nanocrystalline Diamond Film Sliding against a Zirconia Ball. RSC Advances, 5 (2015), 100663-100673.
https://doi.org/10.1039/C5RA18832F
[22].O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, 17(7–10) (2008), 1080-1088.
https://doi.org/10.1016/j.diamond.2008.01.103
[23].J. Yang, and Y. Zhang, Nanocrystalline Diamond Films Grown by Microwave Plasma Chemical Vapor Deposition and Its Biocompatible Property, Advances in Materials Physics and Chemistry, 8 (2018), 157-176.
https://doi.org/10.4236/ampc.2018.84011
[24].Butler, J.E. and Sumant, A.V., The CVD of Nanodiamond Materials, Chemical Vapor Deposition, 14 (2008), 145-160.
https://doi.org/10.1002/cvde.200700037
[25].Fan Dong, Liwen Wu, Yanjuan Sun, Min Fu, Zhongbiao Wu and S. C. Lee, Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21(39) (2011), 15171-15174.
https://doi.org/10.1039/C1JM12844B
[26].Ikeda, T., Teii, K., Casiraghi, C., Robertson, J. and Ferrai, A.C., Effect of the sp2 Carbon Phase on n-Type Conduction in Nanodiamond Films, Journal of Applied Physics, 104 (2008), 073720.
https://doi.org/10.1063/1.2990061
[27].Shraddha Dhanraj Nehate, Sreeram Sundaresh, Hydrogenation of Boron Carbon Nitride Thin Films for Low-k Dielectric Applications, ECS Journal of Solid State Science and Technology, 10 (2021), 093001.
https://iopscience.iop.org/article/10.1149/2162-8777/ac210d
[28].Rongting Wu, Adrian Gozar, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron, npj Quantum Materials volume , 4 (2019), 40.
https://www.nature.com/articles/s41535-019-0181-0
[29].Siby Thomas, Sang Uck Lee, Atomistic insights into the anisotropic mechanical properties and role of ripples on the thermal expansion of h-BCN monolayers, RSC Advances, 9 (2019), 1238-1246.
https://pubs.rsc.org/en/content/articlehtml/2019/ra/c8ra08076c
[30].Shayan Angizi, Md Ali Akbar, Review—Two-Dimensional Boron Carbon Nitride: A Comprehensive Review, ECS Journal of Solid State Science and Technology, 9 (2020), 083004.
https://iopscience.iop.org/article/10.1149/2162-8777/abb8ef
[31].Evgeni S. Penev, Somnath Bhowmick, Polymorphism of Two-Dimensional Boron, American Chemical Society, 5 (2012), 2441-2445. https://pubs.acs.org/doi/full/10.1021/nl3004754
[32].Walter R. L. Lambrecht, Benjamin Segall, Anomalous band-gap behavior and phase stability of c-BN–diamond alloys, PHYSICAL REVIEW B, 47 (1993), 9289.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.9289
[33].Md. Abdul Mannan, Yuji Baba, Hexagonal Nano-Crystalline BCN Films Grown on Si (100) Substrate Studied by X-Ray Absorption Spectroscopy, Materials Sciences and Applications, 4 (2013), 9
https://www.scirp.org/html/3-7700988_31618.htm
[34].D.Y. Guo, P.G. Li, Z.W. Chen, Z.P. Wu, W.H. Tang, Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector, Acta Phys. Sin., 68(7) (2019), 078501.
https://doi.org/10.7498/aps.68.20181845
[35].S. Abolhosseini, A. Heshmati, J. Altmann, A review of renewable energy supply and energy efficiency technologies, Cog. Eng. 8145 (2014).
https://dx.doi.org/10.2139/ssrn.2432429
[36].Wang S, Wei T, Qi Z., Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Goswami D.Y., Zhao Y. (eds) Proceedings of ISES World Congress 2007 (Vol. I–Vol. V). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-75997-3_566
[37].W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, et al., Recent advancements in supercapacitor technology, Nano Energy, 52 (2018), 441-473.
https://doi.org/10.1016/j.nanoen.2018.08.013
[38].J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions, J Power Sources, 401 (2018), 213-223.
https://doi.org/10.1016/j.jpowsour.2018.08.090
[39].Binoy K. Saikia, Santhi Maria Benoy, Mousumi Bora, Joyshil Tamuly, Mayank Pandey, Dhurbajyoti Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel, 282 (2020), 118796.
https://doi.org/10.1016/j.fuel.2020.118796.
[40].N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater Today, 18 (5) (2015), 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[41].Yanfang Xu, Weibang Lu, Guangbiao Xu, Tsu-Wei Chou, Structural supercapacitor composites: A review, Composites Science and Technology, 204 (2021), 108636.
https://doi.org/10.1016/j.compscitech.2020.108636
[42].N.P. Shetti, S. Dias, K.R. Reddy, Nanostructured organic and inorganic materials for Li-ion batteries: a review, Mater Sci Semicond Process, 104 (2019), 104684.
https://doi.org/10.1016/j.mssp.2019.104684
[43].R.E. Ruther, C.N. Sun, A. Holliday, S. Cheng, F.M. Delnick, T.A. Zawodzinski Jr., et al., Stable electrolyte for high voltage electrochemical double-layer capacitors, J Electrochem Soc (2017), A277-A283.
https://doi.org/10.1149/2.0951702jes
[44].Y. Luo, Q. Zhang, W. Hong, Z. Xiao, H. Bai, A High-performance electrochemical supercapacitor based on polyaniline/reduced graphene oxide electrode and copper (ii) ion active electrolyte, Phys. Chem. Chem. Phys., 20 (1) (2017), 131-136.
https://doi.org/10.1039/c7cp07156f
[45].G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41 (2012), 797-828.
https://doi.org/10.1039/C1CS15060J
[46].A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58 (2016), 1189-1206.
https://doi.org/10.1016/j.rser.2015.12.249
[47].K. Poonam, A. Sharma, S.K. Arora, Tripathi, review of supercapacitors: materials and devices, J. Energy Stor., 21 (2019), 801-825.
https://doi.org/10.1016/j.est.2019.01.01
[48].R.L. Spyker, R.M. Nelms, Classical equivalent circuit parameters for a double-layer capacitor, IEEE Trans Aerosp Electron Syst, 36 (3) (2000), 829-836.
https://doi.org/10.1109/7.869502
[49].Y. Show, Research article on electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode, J Nanomater (2012), 1-8.
https://doi.org/10.1155/2012/929343
[50].M. Yassine, D. Fabris, Performance of commercially available supercapacitors, Energies, 10 (9) (2017), 1340-1352.
https://doi.org/10.3390/en10091340
[51].Yong S, Fabrication and characterisation of fabric supercapacitor [Doctoral Thesis], University of Southampton (2016) p.160.
https://eprints.soton.ac.uk/417382/
[52].Kim BK, Sy S, Yu A, Zhang J., Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, Wiley Publications (2015), 1-25.
https://doi.org/10.1002/9781118991978.hces112.
[53].B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
https://link.springer.com/book/10.1007/978-1-4757-3058-6
[54].V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597-1664.
https://doi.org/10.1039/C3EE44164D
[55].C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, J. Front. Energy Res., 3(23) (2015), 1-8.
https://doi.org/10.3389/fenrg.2015.00023
[56].X. Yuan, Y. Zhang, Y. Yan, B. Wei, K. Qiao, B. Zhu, X. Cai, T.-W. Chou, Tunable synthesis of biomass-based hierarchical porous carbon scaffold@ MnO2 nanohybrids for asymmetric supercapacitor, Chem. Eng. J., 393 (2020), 121214.
https://doi.org/10.1016/j.cej.2019.03.090

無法下載圖示 全文公開日期 2025/07/31 (校內網路)
全文公開日期 2025/07/31 (校外網路)
全文公開日期 2025/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE