簡易檢索 / 詳目顯示

研究生: Garuda Raka Satria Dewangga
Garuda Raka Satria Dewangga
論文名稱: Fabrication of Thermally-Conductive Composite-Filled Sol-Gel-Derived Hybrid Materials for Elastomeric Thermal Pads Applications
Fabrication of Thermally-Conductive Composite-Filled Sol-Gel-Derived Hybrid Materials for Elastomeric Thermal Pads Applications
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
廖文城
Wen-Chang Liaw
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 94
中文關鍵詞: 彈性導熱墊矽樹脂矽橡膠氮化硼斷裂伸長率導熱係數
外文關鍵詞: elastomeric thermal pads, silicone resin, silicone rubber, h-BN, elongation at break, thermal conductivity
相關次數: 點閱:360下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 彈性導熱墊廣泛應用於電子產品之散熱器,以達到高效之散熱效果。彈性導熱墊由橡膠基材及導熱無機填充料組成,橡膠基質提供導熱墊韌性,而無機填充料能提升導熱墊之導熱係數。為了獲得高導熱係數,需提升填料含量,但其同時降低導熱墊之韌性。本研究中,矽樹脂引入矽橡膠/氮化硼,以提高導熱墊之導熱係數性及韌性。本研究透過水解縮合法合成三種矽膠包括:有機矽樹酯(Mono-Quad, MQ)、乙烯基-有機矽樹脂(Vi-MQT)及鋁-有機矽樹脂(Al-MQT)並探討其性質。本研究透過Vi-MQT及Al-MQT樹脂取代MQ樹脂以改善矽橡膠之性能,其中乙烯基與鋁作為功能性單元使有機矽樹脂具有更高之熱穩定性;MQ樹脂之添加會降低矽樹脂之交聯密度、熱穩定性、拉伸強度及硬度,但其提高矽樹酯之斷裂伸長率; Vi-MQT樹脂之添加會降低矽樹脂之交聯密度、拉伸強度及硬度,但其提高矽樹酯之斷裂伸長率及熱穩定性;Al-MQT樹脂之添加對矽樹脂之交聯密度、拉伸強度及硬度無顯著影響,但其改善矽樹酯之斷裂伸長率並降低了熱穩定性。結果顯示,高填料濃度的h-BN使復合材料的導熱係數提高到3.253 Wm-1K-1,拉伸強度及伸長率分別降低到1.248 MPa及22%,硬度提高到75 Shore A。有機矽樹脂的添加能有效改善複合材料的導熱係數性,MQ、Vi-MQT3及Al-MQT3樹脂的熱導率分別達3.661、3.962及4.817 Wm-1K-1;拉伸強度分別提升至1.274、1.290及1.312 MPa;斷裂伸長率分別提升至125、188及150%;硬度分別降至69,71及72 Shore A。而隨著矽樹脂的添加,複合材料之密度、揮發物含量、阻燃性和體積電阻率無顯著變化。本研究添加有機矽樹脂於彈性導熱墊中,不僅改善複合材料之伸長率(韌性),且能提升彈性導熱墊之導熱係數性。


    Elastomeric thermal pads is widely used to support a heat sink for an effective and efficient heat dissipation process. Elastomeric thermal pads are consist of rubber matrix and a thermally conductive filler. Rubber is responsible for flexibility property while filler plays a role in the thermal conductivity property. In order to achieve high thermally conductive rubber, high filler loading is needed, in other words, it will sacrifice the flexibility. In this study, a silicone resin introduced in silicone rubber/boron nitride (h-BN) composite to enhance the thermal conductivity with acceptable flexibility property. Three kinds of silicone resin; MQ, vinyl-silicone resin (Vi-MQT) and aluminum-silicone resin (Al-MQT) were synthesized using hydrolysis-polycondensation method and used as a modifier. Additional the functional unit yielded the low molecular weight silicone resin with higher thermal stability. Incorporation of MQ resin reduced the crosslink density, thermal stability, tensile strength and hardness of silicone resin while it improved the elongation property. Replacing MQ resin with Vi-MQT and Al-MQT resin improved the properties of silicone rubber. Addition Vi-MQT resin reduced the crosslink density, tensile strength and hardness while it improved the elongation and thermal stability. Addition Al-MQT resin did not give significant effect to the crosslink density, tensile strength and hardness while it improved the elongation and reduced the thermal stability. High filler concentration of h-BN enhanced the thermal conductivity of composite up to 3.253 W m-1 K-1, reduced the tensile strength and elongation until 1.248 MPa and 22%, respectively, and increased hardness until 75 shore A. Addition of silicone resin improved the thermal conductivity of composites, up to 3.661, 3.962 and 4.817 W m-1 K-1 for MQ, Vi-MQT3 and Al-MQT3 resin, respectively. The tensile strength also improved up to 1.274, 1.290 and 1.312 MPa for MQ, Vi-MQT3 and Al-MQT3 resin, respectively. The elongation at break increased to 125, 188 and 150% with the addition of MQ, Vi-MQT3 and Al-MQT3 resin, respectively. The hardness of composite reduced to 69, 71 and 72 shore A for the addition of MQ, Vi-MQT3 and Al-MQT3 resin, respectively. The density, volatile content, flame resistance and volume resistivity did not significantly change with the addition of silicone resin. It can be concluded that the addition of silicone resin not only improved the elongation (flexibility) but also the thermal conductivity of the composite.

    摘要 i Abstract iii Acknowledgements iv List of Contents v List of Figures vii List of Tables x Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Previous Studies 2 1.3 Research Objectives 6 1.4 Research Flowchart and Thesis Structure 7 Chapter 2 Literature Review 8 2.1 Microelectronic Cooling System 8 2.2 Thermal Interface Material 10 2.3 Elastomeric Thermal Pads 13 2.4 Silicone Rubber Composite 14 2.4.1 Introduction of silicone rubber 15 2.4.2 Silicone rubber composite in elastomeric thermal pads 17 2.5 Boron Nitride 18 2.6 Silicone Resins 19 2.6.1 Introduction of silicone resins 20 2.6.2 Synthesis routes of silicone resins 21 2.7 Thermal Conductivity in Polymer-based Composite 23 2.7.1 Thermal conductivity of polymer 25 2.7.2 Thermal conductivity of filler 27 2.7.3 Thermal conductivity of composite 28 2.7.4 Interface 29 Chapter 3 Experimental Details 31 3.1 Materials 31 3.2 Experimental Design and Procedure 32 3.3 Characterization 36 Chapter 4 Results and Discussion 39 4.1 Silicone Resin Synthesis and Properties 39 4.1.1 Hydrolysis-polycondensation reaction of silicone resins 39 4.1.2 Chemical structure analysis 41 4.1.3 Molecular weight and morphology of silicone resins 43 4.1.4 Thermal stability analysis 46 4.2 Effect of Silicone Resin Addition on Silicone Rubber Composite Properties 48 4.2.1 Structure of crosslinked network 48 4.2.2 Thermal stability analysis 50 4.2.3 Mechanical properties analysis 55 4.3 Evaluation Performance of Silicone Rubber Composite 60 4.3.1 Thermal conductivity 61 4.3.2 Mechanical properties 63 4.3.3 Other properties 66 4.3.4 Performance evaluation 69 4.3.5 Morphology of composites 70 Chapter 5 Conclusions 73 References xi

    [1] Razeeb K, Dalton E, Cross G, Robinson A (2018) Present and future thermal interface materials for electronic devices. Int Materi Rev 63: 1-21
    [2] Sim L, Ramanan S, Ismail H, Seetharamu K, Goh T (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430: 155-165
    [3] Sarvar F, Whalley D, Conway P (2006) Thermal interface materials: a review of the state of the art. In 1st Electronic Systemintegration Technology Conference, 5-7 September, Dresden, Germany; 1292-1302
    [4] Ahmed H, Salman B, Kherbeet A, Ahmed M (2018) Optimization of thermal design of heat sink: a review. Int J Heat Mass Tran 118; 129-153
    [5] Hansson J, Zandén C, Ye L, Liu J (2016) Review of current progress of thermal interface materials for electronics thermal management applications. Proceedings of the 16th International Conference on Nanotechnology, 22-25 August, Sendai, Japan; 371-374
    [6] Otiaba K, Ekere N, Bhatti R, Mallik S, Alam M, Amalu E (2011) Thermal interface materials for automotive electronic control unit: trends, technology and R&D challenges. Microelectron Reliab 5: 2013-2043
    [7] Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. Proceeding of the IEEE 94: 1571-1586
    [8] Zhou W, Qi S, Tu C, Zhao H, Wang C, Kou J (2007) Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J Appl Polym Sci 104: 1312-1318
    [9] Gwinn J and Webb R (2003) Performance and testing of thermal interface materials. Microelectron J 34: 215-222
    [10] Moore A and Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17: 163-174
    [11] Liu J, Wang T, Carlberg B, Inoue M (2008) Recent progress of thermal interface materials. In 2nd Electronics Systemintegration Technology Conference, 1-4 September, Greenwich, UK; 351-358
    [12] Chung D (2001) Thermal interface materials. J Mater Eng Perform 10: 56-59
    [13] Leung S (2018) Thermally conductive polymer composites and nanocomposites: processing-structure-property relationships. Compos Part B 150: 78-92
    [14] Bokobza L (2017) Mechanical and electrical properties of elastomer nanocomposites based on different carbon materials. Journal of Carbon Research 3: 10
    [15] Vadivelu M, Kumar C, Joshi G (2016) Polymer composites for thermal management: a review. Compos Interface 23: 847-872
    [16] Shit S and Shah P (2013) A review on silicone rubber. Natl Acad Sci Lett 36: 355
    [17] Rahimi A and Mashak A (2103) Review on rubbers in medicine: natural, silicone and polyurethane rubbers. Plas Rubber Compos 42: 223-230
    [18] Seethapathy S and Górecki T (2012) Applications of polydimethylsiloxane in analytical chemistry: a review. Anal Chim Acta 750: 48-62
    [19] Babu S and Singh P (2011) A review study on the development of silicone resin polymer. International Journal of Chemistry and Applications 3: 209-214
    [20] Zheng P and McCarthy (2010) Rediscovering silicones: molecularly smooth, low surface energy, unfilled, UV/Vis-transparent, extremely cross-linked, thermally stable, hard, elastic PDMS. Langmuir 26: 18585-18590
    [21] Krumpfer J and McCarthy (2011) Rediscovering silicones: “unreactive” silicone react with inorganic surfaces. Langmuir 27: 11514-11519
    [22] Zheng Z, Cox M, Li B (2018) Surface modification of hexagonal boron nitride nanomaterials: a review. J Mater Sci 53: 66-99
    [23] Yu C, Zhang J, Tian W, Fan X, Yao Y (2018) Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Adv 8: 21948-21967
    [24] Duan X, Yang Z, Chen L, Tian Z, Cai D, Wang Y, Jia D (2016) Review on the properties of hexagonal boron nitride matrix composite ceramics. J Eur Ceram Soc 36: 3725-3737
    [25] Zhou W, Qi S, Zhao H, Liu N (2007) Thermally conductive silicone rubber reinforced with boron nitride. Polym Compos 28: 23-28
    [26] Kemaloglu S, Ozkoc G, Aytac A (2010) Properties of thermally conductive micro and nano size boron nitride reinforced silicone rubber composites. Thermochim Acta 499: 40-47
    [27] Yu J and Cennini G (2013) Improving thermal conductivity of polymer composites in embedded LEDs systems. In The 19th International Workshop on Thermal Investigations of ICs and Systems (Therminic), 25-27 September, Berlin, Germany; 176-180
    [28] Ha J, Hong J, Kim M, Choi J, Park D, Shim S (2013) Improvement of thermal conductivity of poly(dimethyl siloxane) composites filled with boron nitride and carbon nanotubes. Polymer (Korea) 37: 722-729.
    [29] Robinson M and Swain A (2015) Influence of boron nitride on the network structure and properties of poly(dimethylsiloxane) composite materials. Int J Polym Anal Ch 20: 589-601
    [30] Gu J, Meng X, Tang Y, Li Y, Zhuang Q, Kong J (2017) Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos Part A 92: 27-32
    [31] Fang H, Bai S, Wong C (2017) Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Compos Part A 100: 71-80
    [32] Wang J, Zhao D, Zou X, Mao L, Shi L (2017) The exfoliation and functionalization of boron nitride nanosheets and their utilization in silicone composites with improved thermal conductivity. J Mater Sci: Mater Electron 28: 12984-12994
    [33] Tatarinova E, Vasilenko N, Muzafarov A (2017) Synthesis and properties of MQ copolymers: current state of knowledge. Molecules 22: 1768
    [34] Robeyns C, Picard L, Ganachaud F (2018) Synthesis, characterization and modification of silicone resins: an augmented review. Prog Org Coat 125: 287-315
    [35] Flagg D and McCarthy T (2016) Rediscovering silicones: MQ copolymers. Macromolecules 49: 8581-8592
    [36] Shi X, Chen Z, Yang Y (2014) Toughening of poly(L-lactide) with methyl MQ silicone resin. Eur Polym J 50: 243-248
    [37] Chen D, Chen F, Hu X, Zhang H, Yin X, Zhou Y (2015) Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos Sci Technol 117: 307-314
    [38] Liang W, Ge X, Ge J, Li T, Zhao T, Chen X, Song Y, Cui Y, Khan M, Ji J, Pang X, Liu R (2018) Reduced graphene oxide embedded with MQ silicone resin nano-aggregates for silicone rubber composites with enhanced thermal conductivity and mechanical performance. Polymers 10: 1254
    [39] Pihale S, Eder F, Kroke E (2014) Thermal conductivity of filled sol-gel-derived hybrid materials. J Appl Polym Sci 131: 41037
    [40] Zhai S, Zhang P, Xian Y, Zeng J, Shi B (2018) Effective thermal conductivity of polymer composites: theoretical models and simulation models. Int J Heat Mass Tran 117: 358-374
    [41] Eduok U, Faye O, Szpunar J (2017) Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog Org Coat 111: 124-163
    [42] Yilgör E and Yilgör I (2014) Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci 39: 1165-1195
    [43] Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanism, parameters and theory. Prog Polym Sci 61: 1-28
    [44] Chen H, Ginzburg V, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59: 41-85
    [45] Bello I, Zhang W, Chan K, Chan C, Wu Y, Meng F, Lam C, Liu J, Luk W (2002) Diamond and cubic boron nitride: synthesis and electronic applications. In The 4th International Conference on Advanced Semiconductor Devices and Microsystem, 14-16 October, Smolenice Castle, Slovakia; 1-11
    [46] Jiang X, Weng Q, Wang X, Li X, Zhang J, Golberg D, Bando Y (2015) Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J Mater Sci Technol 31: 589-598
    [47] Eichler J and Lesniak C (2008) Boron nitride (BN) and BN composites for high-temperature applications. J Eur Ceram Soc 28: 1105-1109
    [48] Schmidt H, Jonschker G, Goedicke S, Mennig M (2000) The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites. J Sol-Gel Sci Technol 19: 39-51
    [49] Pandey S and Mishra S (2011) Sol-gel derived organic-inorganic hybrid materials: synthesis, characterization and applications. J Sol-Gel Sci Technol 59: 73-94
    [50] Guo X, Zhang Q, Ding X, Shen Q, Wu C, Zhang L, Yang H. Synthesis and application of several sol-gel derived materials via sol-gel process combining with other technologies: a review. J Sol-Gel Technol 79: 328-358
    [51] Tsekmes I, Kochetov R, Morshuis P, Smit J (2013) Thermal conductivity of polymeric composites: a review. In IEEE International Conference on Solid Dielectrics, June 30 - July 4, Bologna, Italy; 678-681
    [52] Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J (2018) Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today 12: 92-130
    [53] Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Mat Sci Eng R 132: 1-22
    [54] Kim H, Jang J, Lee H, Kim S, Kim S, Kim J, Jung Y, Yang B (2018) Thermal management in polymer composites: a review of physical and structural parameters. Adv Eng Mater 20: 1800204
    [55] Zhou Y, Liu F, Wang H (2015) Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: a key issue review. Polym Compos 4: 803-813
    [56] Liu B, Dong L, Xi Q, Xu X, Zhou J, Li B (2018) Thermal transport in organic/inorganic composites. Front Energy 12: 72-86
    [57] Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Adv Mater 30: 1705544
    [58] Guerra V, Wan C, McNally T (2019) Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog Mater Sci 100: 170-186
    [59] Kuo C, Chen J, Shih C, Huang C (2014) Silicone resin synthesized by tetraethoxysilane and chlorotrimethylsilane through hydrolysis-condensation reaction. J Appl Polym Sci 131: 41037
    [60] Kuo C and Chen J (2015) Study on the synthesis and application of silicone resin containing phenyl group. J Sol-Gel Sci Technol 76: 66-73
    [61] Sun F, Hu Y, Du H (2012) Synthesis and characterization of MQ silicone resins. J Appl Polym Sci 125: 3532-3536
    [62] Karmakar B, De G, Ganguli D (2000) Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J Non-Cryst Solids 272: 119-126
    [63] Hah H and Koo S (2004) Surface modification of PTMS Particles with organosilanes: TEOS-, VTMS- and MTMS-modified particles. J Sol-Gel Sci Technol 31: 117-121
    [64] Socrates. Infrared and Raman Characteristic Group Frequencies. Eds. 3, 2004. John Wiley & Sons: West Sussex
    [65] Rubio F, Rubio J, Oteo J (1998) A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 31: 199-219
    [66] Li R, Zhang B, Sun Y, Liu B, Wang G (2013) Synthesis of vinylphenyl oligomeric silsequioxane based on MQ silicone resin. Asian J Chem 25: 2541-2546
    [67] Chen J, Fu Z, Huang H, Zeng X, Chen Z (2016) Preparation and properties of vinylphenyl-silicone resins and their application in LED packaging. RSC Adv 6: 71924-71933
    [68] Luo Y. Handbook of Dissociation Energies in Organic Compound. Eds. 1, 2002. CRC Press: Oxfordshire
    [69] Rajesh G, Maji P, Bhattacharya M, Choudhury A, Roy N, Saxena A, Bhowmick A (2010) Liquid silicone rubber vulcanizates: network structure-property relationship and cure kinetics. Polym Polym Compos 18: 477-488
    [70] Omidian H, Hashemi S, Askari F, Nafisi S (1994) Swelling and crosslink density measurements for hydrogels. Iran J Polym Sci Technol 3: 115-119
    [71] Chen Y, Feng Y, Zhao J, Shen J, Feng M (2016) Oil bleed from elastomeric thermal silicone conductive pads. Front Chem Sci Eng 10: 509-516
    [72] Cao E, Cui X, Wang K, Li Y, Guo W (2015) Improving properties of ceramic silicone rubber composites using high vinyl silicone oil. J Appl Polym Sci 132: 41864
    [73] Yin Y, Chen X, Lu J, Liu Z, Chen X (2016) Influence of molar ratio of Si-H to Si-CH=CH2 on mechanical and optical properties of silicone rubber. J Elastom Plast 48: 206-216
    [74] Zhan X, Xing Q, Liu H, Zhang J, Cheng J, Lin X (2014) A facile method for fabrication of titanium-doped hybrid materials with high refractive index. RSC Adv 4: 13909-13918
    [75] Li R, Zhang B, Liu B, Chen X, Wang G (2012) Structure and properties of poly(diphenylsiloxane-co-dimethylsiloxane) modified MQ silicone resin. Adv Mater Res 496: 109-115
    [76] Zhang C, Liu L, Zhang Z, Pal K, Kim J (2011) Effect of silica and silicone oil on the mechanical and thermal properties of silicone rubber. J Macromol Sci B 50: 1144-1153
    [77] Kong S, Mariatti M, Busfield (2011) Effects of types fillers and filler loading on the properties of silicone rubber composites. J Reinf Plas Comp 30: 1087-1096
    [78] Tonpheng B, Yu J, Andersson O (2009) Thermal conductivity, heat capacity, and crosslinking of polyisoprene/single-wall carbon nanotube composites under high pressure. Macromolecules 42: 9295-9301
    [79] Choi J, Song H, Jung J, Yu J, You N, Goh M (2017) Effect of crosslink density on thermal conductivity of epoxy/carbon nanotube nanocomposites. J Appl Polym Sci 134: 44253
    [80] Zhu C, Deng C, Cao J, Wang Y (2015) An efficient flame retardant for silicone rubber: preparation and application. Polym Degrad Stabil 121: 42-50
    [81] Yu B, Xing W, Guo W, Qiu S, Wang X, Lo S, Hu Y (2016) Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. J Mater Chem A 4: 7330-7340
    [82] Wang L, Zhang L, Fischer A, Zhong Y, Drumer D, Wu W (2018) Enhanced thermal conductivity and flame retardancy of polyamide 6/flame retardant composites with hexagonal boron nitride. J Polym Eng 38: 767-774
    [83] Xu W, Li A, Liu Y, Chen R, Li W (2018) CuMoO4@hexagonal boron nitride hybrid: an ecofriendly flame retardant for polyurethane elastomer. J Mater Sci 53: 11265-11279
    [84] Zhong Y, Zhang L, Fischer A, Wang L, Drummer D, Wu W (2018) The effect of h-BN on the flame retardancy and thermal stability of P-N flame retardant PA6. J Macromol Sci A 55: 17-23
    [85] Weng L, Wang H, Zhang X, Liu L, Zhang H (2018) Preparation and properties of boron nitride/epoxy composites with high thermal conductivity and electrical insulation. J Mater Sci-Mater El 29: 1467-1476
    [86] Zhou W, Zuo J, Zhang X, Zhou A (2013) Thermal, electrical, and mechanical properties of hexagonal boron nitride-reinforced epoxy composites. J Compos Mater 48: 2517-2526

    無法下載圖示 全文公開日期 2024/02/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE