簡易檢索 / 詳目顯示

研究生: 林彥甫
Yan-fu Lin
論文名稱: Pr1-xSrxMO3應用於高溫型混合電位式NO2氣體感測器之研究
Use of Pr1-xSrxMO3 in high-temperature mixed-potential NO2 gas sensor
指導教授: 蕭敬業
Ching-yeh Shiau
口試委員: 劉端祺
Tuan-chi Liu
周振嘉
Chen-chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 100
中文關鍵詞: 鈣鈦礦結構陰極混合電位式二氧化氮感測器
外文關鍵詞: perovskite-type oxides, cathode, mixed-potential, NO2 sensor
相關次數: 點閱:202下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在研究鈣鈦礦結構氧化物陰極材料應用於二氧化氮感測器的特性,使用的材料分別為Pr0.7Sr0.3CrO3-δ、Pr0.7Sr0.3FeO3-δ以及Pr0.7Sr0.3CoO3-δ。電極粉末是使用溶膠凝膠法製備而得。利用檸檬酸鹽前導化合物經煅燒,混合有機溶劑成為網印膠,再將網印膠以網印法塗布到YSZ電解質錠片上燒結,完成後得到所需要之感測電極,而此電極以XRD、FE-SEM等設備來進行分析,最後再組裝成感測器進行二氧化氮氣體感測。
XRD分析結果顯示,所選用的三種材料皆為鈣鈦礦結構。而FE-SEM圖片顯示煅燒溫度越高的粉末其平均粒徑越大;網印膠濃度越稀薄,製備完成後的電極厚度越薄。從NO2感測特性結果可知,應答電位最大的電極材料為Pr0.7Sr0.3CrO3-δ,而其最佳煅燒溫度為1200℃,最佳電極的厚度條件是以1:5粉末溶劑比所燒結的電極,其應答電位差最大且回復時間最短。操作電流以施加1µA有最小的應答電位差但是卻有最短的回復時間。


The main purpose of this study is to investigate the characteristics of perovskite oxide used as cathode for NO2 sensor. Three kinds of perovskite-type oxides were used including Pr0.7Sr0.3CrO3-δ, Pr0.7Sr0.3FeO3-δ and Pr0.7Sr0.3CoO3-δ. The electrodes were prepared by sol-gel method. The sensing electrode was made by mixing the calcined precursor with organic solvent.
The slurry thus obtained was then printed on YSZ pellets by screen-printing method and sintered to form sensing electrodes. The electrodes were characterized by XRD and FE-SEM, and finally tested in the assembled NO2 sensors.
From XRD patterns, all the prepared oxide powers were found to be perovskite type. FE-SEM photos show that the average particle size was increased with increasing calcined temperature. A thinner sensing electrode was obtained by using dilute slurry.
NO2 sensing analysis shows that Pr0.7Sr0.3CrO3-δ was found to be the best oxide power for NO2 sensing electrode. The optimal calcined temperature is 1200℃. The better slurry concentration for the sensing electrode was found to be 1:5 wt. ratio of oxide powder to organic solvent. Such prepared sensing electrode presents larger voltage change and shorter recovery time. The best current bias for the sensing system was 1µA.

目錄 摘要…………………………………………………………………..………Ⅰ Abstract……………………………………………………………………….Ⅱ 致謝………………………………………………………………………..…Ⅳ 目錄…………………………………………………………………………..Ⅴ 圖目錄………………………………………………………………………..Ⅷ ……………………………..………Ⅴ 表目錄……………………………………………………………………..ⅩⅢ 符號說明…………………………………………………………………..ⅩⅣ 第一章 緒論………………………………………………………………..…1 第二章 文獻回顧…………………………………………………………....3 2-1氣體感測器的種類與原理……………………………………………...3 2-1-1 觸媒燃燒型氣體感測器…………………………………………...3 2-1-2 金屬氧化物半導體氣體感測器……………………………………4 2-1-3 場效電晶體型氣體感測器……………………………………...….6 2-1-4 電阻式感測器……………………….………..………………….…7 2-1-5 電化學固態電解質型氣體感測器…………………………...…….9 2-1-5-1 平衡電位式感測………………………………………..……10 2-1-5-2 極限電流式感測器…………………………………………..12 2-1-5-3 混合電位式感測器………………………………………..…14 2-2 電極材料……………………………………………………….………19 2-2-1 貴金屬電極………………………………………………………..19 2-2-2 貴金屬合金電極…………………………………………………..20 2-2-3 離子電子混合導體電極…………………………………..………21 2-2-4 單一金屬氧化物電極……………………………………..………23 2-2-5 鈣鈦礦結構氧化物電極……………………………………….….27 2-2-5-1 鈣鈦礦結構組成……………………………………………..27 2-2-5-2 鈣鈦礦結構之穩定性………………………………………..28 2-2-5-3 鈣鈦礦結構電極NOX感測器……………………………….29 2-2-5-4 以Pr代替La的鈣鈦礦結構……………………………..….32 2-3 粉體製備……………………………………………………………….33 2-3-1 共沈法…………………………………………………………..…34 2-3-2 水熱法……………………………………………………………..35 2-3-3 溶膠-凝膠法………………………………………………………36 第三章 實驗方法與步驟………………………………………………...….40 3-1 實驗流程……………………………………………………………….40 3-2 儀器設備………………………………………………………...……..41 3-3 實驗藥品…………………………………………………….....………42 3-4 氣體感測裝置…………………………………………………….....…43 3-5 感測元件的製備……………………………………………….………46 3-5-1 製備電極粉末……………………………………………………..46 3-5-2 調製電極網印用膠………………………………………………..48 3-5-3 乾壓法製備YSZ電解質片………………………………….……49 3-5-4 製作Pt電極……………………………………………………….52 3-5-5 製作鈣鈦礦氧化物電極…………………………………………..52 3-5-6 連接Pt導線…………………………………………………….....53 3-6 感測元件的特性鑑定與分析………………………………………….54 3-6-1 場發射掃描式電子顯微鏡(FE-SEM)………………….…….55 3-6-2愛克斯光粉末繞射儀(XRD)……………………………………56 3-7 氣體感測特性之研究…………………………………………….……58 3-7-1 NOx感測器反應機制………………………………………..…58 3-7-2 氣體感測示意圖 …………………………………………….….58 第四章 結果與論………………………………………………….………...60 4-1 電極的鑑定…………………………………………………………….60 4-1-1 場發射掃描式電子顯微鏡(FE-SEM)………………………..60 4-1-1-1 Pt相對電極分析………………………….....................….61 4-1-1-2 PrSrCr電極分析…………………………………….…….62 4-1-1-3 PrSrFe電極分析…………………………………………..64 4-1-1-4 PrSrCo電極分析………………………………………….66 4-1-2 愛克斯光繞射分析(XRD)………………………………….68 4-2 電極感測分析………………………………………………………….71 4-2-1 PrSrCr電極…………..................................................................71 4-2-1-1 煅燒溫度對NO2感測的影響……………………………....71 4-2-1-2 不同網印膠濃度所製備的電極對NO2感測之影響………76 4-2-2 PrSrCr、PrSrFe、PrSrCo電極比較………………………...…80 4-2-3 不同操作電流對NO2感測之影響…………………….………84 4-2-4 不同氣體流速對NO2感測之影響…………………….………85 第五章………………………………………………………………………...87 參考文獻……………………………………………………………………...89 附錄A……………………………………………………………………...…97 附錄B………………………………………………………………………...98 圖目錄 圖2-1 觸媒燃燒型氣體感測器之感測元件……………...………………….4 圖2-2 場效電晶體型感測器之感測元件…………………………...………6 圖2-3 低溫共燒陶瓷電阻式感測器元件……………………….…………8 圖2-4 以SnO2為感測材料之電阻式感測器元件……………………….…8 圖2-5 以SnO2-CeO2-PdOx作為感測材料之電阻式感測元件…………….9 圖2-6 YSZ電解質氧氣感測器之感測元件................................................10 圖2-7 頂針形YSZ電位式氧氣感測器.........................................................12 圖2-8 小孔形式極限電流氧氣感測器…………………………………..…13 圖2-9 孔隙層形式極限電流氧氣感測器…………………………..………13 圖2-10 三層式YSZ-Al2O3孔隙/電解質層之極限電流感測器…………...14 圖2-11 以SDC為電解質之小孔形式極限電流氧氣感測器………………14 圖2-12 以ZnO為電極之混合電位式感測器………………………..….…17 圖2-13 混合電位式感測器(a)管狀型(b)平板型.…………………...17 圖2-14 以ZeFe2O4為電極之混合電位式NOx感測器……………………18 圖2-15 氧化物感測材料之混合電位式感測器………………………..…..18 ………53 圖2-16 以Pt與Au為電極之感測元件…………………………………....20 ……….54 圖2-17 以Ni-Ti為合金電極之感測元件……………………………….…20 ..55 圖2-18 以氧化物為感測電極之NOx感測器………………………………24 圖2-19 以金屬氧化物為電極的感測器元件………………………………25 圖2-20 三種電極配置方式…………………………………………………26 圖2-21 以NiO感測電極的NOx感測器 (a)正面(b)背面……………..…27 圖2-22 鈣鈦礦結構(ABO3)示意圖…………………………………………28 圖2-23 (Pt)LaFeO3/YSZ/Pt感測器之感測元件………………………..…30 圖2-24 對稱半圓、不對稱半圓以及指叉形電極示意圖……………….…31 圖2-25 感測材料塗佈位置示意圖…………………………………………31 圖2-26 (a)半圓形電極(b)指叉形電極………………………………32 圖3-1 實驗設計流程圖……………………………………………………..41 圖3-2 實驗感測流程圖…………………………………………………......44 ………………57 圖3-3 實驗裝置圖……………………………………………………….….45 。活 圖3-4 反應管構造圖………………………………………………………...45 圖3-5 感測器側面示意圖……………………………………………….….46 圖3-6 溶膠-凝膠之煅燒750℃之程式升溫圖………………………….….48 .59 圖3-7 感測電極之網印膠製備流程圖………………………….………….50 圖3-8 壓製YSZ生胚之不鏽鋼模具…………………………………….51 ………….60 圖3-9 燒結YSZ電解質之程式升溫圖…………………………………51 圖3-10 網印機示意圖………………………………………………………53 圖3-11 網版圖案……………………………………………………………53 圖3-12 NO2感測器(a)感測電極(b)Pt電極……………………..…54 圖3-13 X-ray經過晶體的繞射示意圖……………………………………58 圖3-14 NO2感測器簡化之理想機制示意圖…………………………..…59 圖4-1 Pt電極以1000℃燒結1小時後之表面形態………………………61 …… .61 圖4-2 Pt電極以750℃燒結1小時後之表面形態……………………… 62 圖4-3 Pt電極以750℃燒結1小時後之截面形態……………………….62 圖4-4 不同煅燒溫度的PrSrCr電極表面,粉末的煅燒溫度分別為 (a)750℃(b)900℃(c)1050℃(d)1200℃(e)1350℃………63 圖4-5 以1200℃煅燒的PrSrCr粉末製備之電極截面圖 網印膠的比例分別為(a)1:1(b)1:2(c)1:5……………64 圖4-6 以750℃煅燒的PrSrFe粉末製備之電極表面圖…………………..65 圖4-7 以1200℃煅燒的PrSrFe粉末製備之電極表面圖…………………65 圖4-8 以1200℃煅燒的PrSrFe粉末,網印膠的比例分別為 體 (a)1:1(b)1:5……………………………………………….66 圖4-9 以750℃煅燒的PrSrCo粉末製備之電極表面圖………………….67 圖4-10 以1200℃煅燒的PrSrCo粉末製備之電極表面圖………………..67 圖4-11 以1200℃煅燒的PrSrCo粉末,網印膠的比例分別為 (a)1:1(b)1:5……………………………………………….68 圖4-12 不同煅燒溫度的PrSrCr粉末之XRD分析圖………………….…69 圖4-13 煅燒750℃以及1200℃的PrSrFe粉末之XRD分析圖………….70 圖4-14 煅燒750℃以及1200℃的PrSrCo粉末之XRD分析圖………….70 圖4-15 不同煅燒溫度的PrSrCr粉末製備的電極,在450℃氣溫下 應答電位圖……………………………………………………...…71 圖4-16 不同煅燒溫度的PrSrCr粉末製備的電極,在500℃氣溫下 水洗後,再利用 應答電位圖……………………………………………………...…72 圖4-17 不同煅燒溫度的PrSrCr粉末製備的電極,在550℃氣溫下 應答電位圖……………………………………………………...…72 圖4-18 不同煅燒溫度PrSrCr在450℃氣溫下的電位差比較圖………….73 圖4-19 不同煅燒溫度PrSrCr在500℃氣溫下的電位差比較圖…………..74 圖4-20 不同煅燒溫度PrSrCr在550℃氣溫下的電位差比較圖………….74 圖4-21 不同煅燒溫度的PrSrCr粉末之最大特性峰比較圖……………....75 圖4-22 煅燒1200℃的PrSrCr粉末,以不同濃度的網印膠製備的電極 在450℃測試溫度下的應答圖…………………………………....77 圖4-23 煅燒1200℃的PrSrCr粉末,以不同濃度的網印膠製備的電極 在500℃測試溫度下的應答圖…………………………………….77 圖4-24 煅燒1200℃的PrSrCr粉末,以不同濃度的網印膠製備的電極 在550℃測試溫度下的應答圖………………………………..…..78 圖4-25 煅燒1200℃的PrSrCr粉末,以不同濃度的網印膠製備的電極 在450℃測試溫度下的電位差比較圖…………………………....79 圖4-26 煅燒1200℃的PrSrCr粉末,以不同濃度的網印膠製備的電極 在500℃測試溫度下的電位差比較圖…………………………….79 圖4-27 煅燒1200℃的PrSrCr粉末,以不同濃度的網印膠製備的電極 在550℃測試溫度下的電位差比較圖…………………………....80 圖4-28 以750℃煅燒的PrSrCr、PrSrFe以及PrSrCo粉末,用1:1 mg/L 網印膠製備的電極,在450℃測試溫度下的應答電位圖……….81 圖4-29 以1200℃煅燒的PrSrCr、PrSrFe以及PrSrCo粉末,用1:1 網印膠製備的電極,在450℃測試溫度下的應答電位圖……….81 圖4-30 以1200℃煅燒的PrSrCr、PrSrFe以及PrSrCo粉末,用1:5 網印膠製備的電極,在450℃測試溫度下的應答電位圖……….83 圖4-31 以1200℃煅燒的PrSrCr、PrSrFe以及PrSrCo粉末,用1:5 網印膠製備的電極,在500℃測試溫度下的應答電位圖………83 圖4-32 以1200℃煅燒的PrSrCr、PrSrFe以及PrSrCo粉末,用1:5 網印膠製備的電極,在550℃測試溫度下的應答電位圖…….…84 圖4-33 以1200℃煅燒的PrSrCr粉末,用1:5網印膠製備的電極, Zn2+ 在550℃測試溫度下,操作電流對NO2感測之影響……………85 圖4-34 以1200℃煅燒的PrSrCr粉末,比較不同氣體流速對 應答電位的影響…………………………………………………...86 表目錄 表 2-1 半導體/添加物/可測氣體………………………………...…………..5 表 2-2 各類mixed-potential 型式感測器…...……………………………..16

參考文獻

Azad, A.M.; Akbar, S.A.; Mhaisalkar, S.G.; Birkefeld, L.D.; Goto, K.S.,” Solid-state gas sensors: A review“, J. Electrochem. Soc., v139, n12, pp.3690-3704(1992).

Bilc, D.I. and Singh, D.J.,” Frustration of tilts and A-site driven ferroelectricity in KNbO3-LiNbO3 alloys” Physical Review Letters, v96,pp. 147602(2006).

Brosha, E. L.; Mukundan, R.; Brown, David R.; Garzon, Fernando H.; Visser, J.H.; Zanini, M.; Zhou, Z.; Logothetis, E.M,” CO/HC sensors based on thin films of LaCoO3 and La0.8Sr0.2CoO3-δ metal oxides” Sensors and Actuators B, v69,pp.171-182(2000).

Choy, J.H.; Han, Y.S.; Kim, J.T.; Kim, Y.H., “Citrate route to ultra-fine barium polytitanates with microwave dielectric properties”, J. Mater. Chem., v5, pp.57-63(1995).

Dawber, M.; Lichtensteiger, C.; Cantoni, M.; Veithen, M.; Ghosez, P.; Johnston, K.; Rabe, K.M.; Triscone, J.-M.,” Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices” Physical Review Letters, v95,pp.177601(2005).

Di Bartolomeo, E.; Kaabbuathong, N.; D'Epifanio, A.; Grilli, M.L.; Traversa, E.; Aono, H.; Sadaoka, Y.,” Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers” Journal of the European Ceramic Society, v24, PP.1187-1190(2004).

Di Bartolomeo, E. ; Kaabbuathong, N. ; Grilli, M.L. ; Traversa, E.,” Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes” Solid State Ionics, v171,pp.173-181(2004).

Dutta, A. and Ishihara, T.,” Amperometric NOX sensor based on oxygen pumping current by using LaGaO3-based solid electrolyte for monitoring exhaust gas” Sensors and Actuators B,v108,pp.309-313(2005).

Fernandez J. A., “ Development of an oxygen sensor for molten 44.5% lead-55.5% bismuth alloy “., Journal of Nuclear Materials, 301, pp.47-52, (2002).

Fleming, W.J.,” Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor”J. Electrochem. ,Soc. 124,pp.21-28(1977).

Fung, K.Z. and Yu, H.C.,” Electrode properties of La1-xSrxCuO 2.5-δ as new cathode materials for intermediate-temperature SOFCs” Journal of Power Sources, v133,pp.162-168(2004).

Göpel, W.; Hesse, J.; Zemel, J.N.,”Sensors”, VCH (Verlaysgesellschaftm-
bH), New York, pp.61(1991).

Grilli, M.L.; Chevallier, L.; Di Vona, M.L.; Licoccia, S.; Di Bartolomeo, E.,” Planar electrochemical sensors based on YSZ with WO3 electrode prepared by different chemical routes” Sensors and Actuators B, v111-112,pp.91-95(2005).

Han, K.W.; Lee, J.H; Kim, B.K.; Lee, K.Y.; Kim, H.I.,” New catalyst monitoring sensor for gasoline engine using YSZ-Al2O3 as solid electrolyte and gas diffusion barrier” Sensors and Actuators B, v59,pp.9-15(1999).

Han, S.D.;Kim, I.J.;Singh, I.;Lee, H.D.;Wang, J.S.,”Sensitivity enhancement for CO gas detection using a SnO2-CeO2-PdOx system” Sensors and Actuators B, v107,pp.825-830(2005).

Hashimoto, S.I.; Kammer, K.; Larsen, P.H.; Poulsen, F.W.; Mogensen, M.,” A study of Pr0.7Sr0.3Fe1-xNi xO3-δ as a cathode material for SOFCs with intermediate operating temperature” Solid State Ionics, v176,pp.1013-1020(2005).

Huang, W.; Shuk, P.; Greenblatt, M.,”Properties of sol-gel prepared Ce1-xSmxO2-x/2 Solid electrolytes”, Solid State Ionics, v100, pp.23-27(1997).

Kale, G.M. and Xiong, W.,” Novel high-selectivity NO2 sensor incorporating mixed-oxide electrode” Sensors and Actuators B, v114,pp.101-108(2006).

Kim, D.J.; Jo, J.Y.; Kim, Y.S.; Chang, Y.J.; Lee, J.S.; Yoon, J.G.; Song, T.K.; Noh, T.W.,” Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors” Physical Review Letters, v95,pp. 237602(2005).

Kim S., Yang Y. L., Jacobson A. J., Abeles B.,” Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation ”., Solid State Ionics, 106,
189-195(1998).

Kuroiwa, Y.; Fujiwara, H.; Sawada, A.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Takata, M.; Kawaji, H.; Atake, T.,” Distinctive charge density distributions of perovskite-type antiferroelectric oxides PbZrO3 and PbHfO3 in cubic phase” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, v43,pp.6799-6802(2004).

Kurosaki, K.; Adachi, J.; Maekawa, T.; Yamanaka, S.,” Thermal conductivity analysis of BaUO3 and BaZrO3 by semiempirical molecular dynamics simulation” Journal of Alloys and Compounds, v407,pp.49-52(2006).

Li, F.; Tang, Y.; Li, L.,” Distribution of oxygen potential in ZrO2-based solid electrolyte and selection of reference electrode of oxygen sensor” Solid State Ionics, v86-88,pp. 1027-1031(1996).

Li, J.G.; Ikegami, T.; Mori, T.,“Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors”, Acta Materialia, v52, pp.2221-2228(2004).

Liu, Y.; Koep, E.; Liu, M.,” A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition” Chemistry of Materials, v17, pp. 3997-4000(2005).

Logothetis, E.M. and Brailsford, A.D.,” Selected aspects of gas sensing” Sensors and Actuators B, v52,pp.195-203(1998).

Lu G., Miura N., Yamazoe N., ” High-temperature hydrogen sensor based on stabilizes zirconia and metal oxide electrode ”., Sensors and Actuators B, v35-36, pp.130-135(1996).

Lu, X.; Li, Q.; Yang, D.,” Dielectric properties and sintering characteristics of CaTiO3-(Li1/2Nd1/2)TiO3 ceramics” Journal of Electroceramics, v14,pp. 59-65(2005).

Maric, R., Ohara, S., Fukui, T., Inagaki, T., Fujita J. I.,” High-performance Ni-SDC cermet for Solid Oxide Fuel Cells at Medium Operating Temperature ”., Electrochemical and Solid-State Letters, 1(5),pp. 201-203(1998).

Martin, L.P.; Pham, Q.; Glass, R.S.,” Effect of Cr2O3 electrode morphology on the nitric oxide response of a stabilized zirconia sensor” Sensors and Actuators B, v96,pp.53-60(2003).

Ménil, Francis; Coillard, Veronique; Lucat, Claude;” Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines” Sensors and Actuators B, v67,pp.1-23(2000).

Miura, N.; Kurosawa, H.; Hasei, M.; Lu, G.; Yamazoe, N.,” Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts” Solid State Ionics, v86-88,pp.1069-1073(1996).

Miura, N.; Raisen, T.; Lu, G.; Yamazoe, N.,” Zirconia-based potentiometric sensor using a pair of oxide electrodes for selective detection of carbon monoxide” Journal of the Electrochemical Society, v144,pp. L198-L200(1997).

Miura, N. Raisen, T.; Lu, G.; Yamazoe, N.,” Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes” Sensors and Actuators B, v47,pp.84-91(1998 B).

Miura, N.; Lu, G.; Yamazoe, N.,”High-temperature potentiometric /amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode” Sensors and Actuators B, v52, pp.169-178(1998 A).

Miura, N.; Lu, G.; Yamazoe, N.,” Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2” Sensors and Actuators B, v65,pp.125-127(2000 B).

Miura, N.; Lu, G.; Yamazoe, N.,” Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases” Solid State Ionics, v136-137,pp.533-542(2000 A).

Miura, N.; Zhuiykov, S.; Ono, T.; Hasei, M.; Yamazoe, N.,”Mixed potential type sensor using stabilized Zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature”, Sensors and Actuators B, v83, pp.222-229(2002).

Miura, N.; Nakatou, M.; Zhuiykov, S.,” Development of NOx sensing devices based on YSZ and oxide electrode aiming for monitoring car exhausts” Ceramics International, v30,pp.1135-1139(2004).

Miura, N.; Elumalai, P.; Wang, J.; Zhuiykov, S.; Terada, D.,” Sensing characteristics of YSZ-based mixed-potential-type planar NO x sensors using NiO sensing electrodes sintered at different temperatures” Journal of the Electrochemical Society, v152,pp. H95-H101(2005).

Miura, N.; Wang, J.; Nakatou, M.; Elumalai, P.; Zhuiykov, S.; Hasei, M.,” High-temperature operating characteristics of mixed-potential-type NO 2 sensor based on stabilized-zirconia tube and NiO sensing electrode” Sensors and Actuators B, v114,pp.903-909(2006).

Morita, M., Niwa, O., Tou, S., Watanabe, N., ”Nickel content dependence of electrochemical behavior of carbohydrates on a titanium-nickel alloy electrode and its application to a liquid chromato- graphy detector ”., Journal of chromatography A, 837, pp.17-24(1999).

Mukundan, R.; Brosha, E.L.; Brown, D.R.; Garzon, F.H.,” Mixed-potential sensor based on a Ce0.8Gd0.2O1.9 electrolyte and platinum and gold electrodes” Journal of the Electrochemical Society, v147,pp.1583-1588(2000).

Mukundan, R.; Brosha, E.L.; Garzon, F.H.,” Mixed potential hydrocarbon sensors based on a YSZ electrolyte and oxide electrodes” Journal of the Electrochemical Society, v150,pp.H279-H284(2003).

Peck, D.H.; Miller, M.; Hilpert, K.,” Phase diagram studies in the SrO-Cr2O3-La2O3 system in air and under low oxygen pressure” Solid State Ionics, v123,pp.59-65(1999).

Peng, C.; Zhang, Y.; Cheng, Z.W., “Nitrate–citrate combustion synthesis and properties of Ce1–x Sm x O2–x/2 solid solutions”, Journal of Materials Science: Materials in Electronics, v13, pp.757-762(2002).

Skelton, D.C., Tobin, R.G., Lambert, D.K., DiMaggio C.,L., Fisher, G.B., ” A surface-science-based model for the selectivity of platinum-gold alloy electrodes in Zirconia-based NOx sensors ” ., Sensors and Actuators B, v96, pp.46-52(2003).

Snow, A. W., Barger, W. R., Klusty, M., Wohltjen, H., and Jarvis, N. L., Langmuir, n2, 513(1986).

Sorita, R. and Kawano, T.,” Highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell” Sensors and Actuators, B,v40,pp.29-32(1997).

Takeda, Y.;Sakaki, Y.; Kato, A.; Imanishi, N.; Yamamoto, O.; Hattori, M.; Iio, M.; Esaki, Y.,” Ln1-xSrxMnO3 (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells” Solid State Ionics, v118,pp.187-194(1999).

Teterycz, H.; Kita, J.; Bauer, R.; Golonka, L.J.; Licznerski, B.W.; Nitsch, K.; Wiśniewski, K.” New design of an SnO2 gas sensor on low temperature cofiring ceramics” Sensors and Actuators B, v47, pp.100-103 (1998).

Thangadurai, V. and Weppner, W.,”Ce0.8Sm0.2O1.9: characterization of electronic charge carriers and application in limiting current oxygen sensors”, Electrochimica Acta, v49, pp.1577-1585(2004).

Traversa, E;Jong Won Yoon;Grilli, M.L.; Di Bartolomeo, E.; Polini, R.,” The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes” Sensors and Actuators B,v76,pp.483-488(2001).

West, D.L.; Montgomery, F.C.; Armstrong, T.R.,” Use of La0.85Sr0.15CrO3 in high-temperature NOx sensing elements” Sensors and Actuators B,v106,pp.758-765(2005 B).

West, D.L.; Montgomery, F.C.; Armstrong, T.R.,” "NO-selective" NOx sensing elements for combustion exhausts” Sensors and Actuators B,v111-112,pp.84-90(2005 A).

Wu, R.J.; Hu, C.H.; Yeh, C.T.; Su, P.G.,” Nanogold on powdered cobalt oxide for carbon monoxide sensor” Sensors and Actuators B, v96,pp.591-601(2003).

Wurzinger, O.; Reinhardt, G.” CO-sensing properties of doped SnO2 sensors in H2-rich gases” Sensors and Actuators B, v103,pp.104-110 (2004).

Yamashita, K.; Ramanujachary, K.V.; Greenblatt, M.”Hydothermal synthesis and low temperature conduction properties of substituted ceria ceramics”, Solid State Ionics, v81, pp.53-60(1995).

Zhu, B.; Liu, X.; Schober, T.,”Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications”, Electrochemistry Communications, v6, pp.378-383(2004).

曾明漢,”觸媒燃燒型氣體感測器”,材料與社會,第68期,第60頁,(1992)。

顧志鴻,”MOSFET氣體感測器”, 材料與社會,第68期,第71頁,(1992)。

鄭銘堯,”YSZ電解質一氧化碳感測器之研究”,碩士論文,國立台灣科技大學,(2000)。

張琨揮,”取代型金屬花青薄膜之電流式氣體感測器研究”,碩士論文,國立台灣科技大學,(2002)。

魏炯權,電子陶瓷材料,全華科技圖書股份有限公司,(2004)。

黃鼎翰,”以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究”,碩士論文,國立台灣科技大學,(2004)。

黃帥凱,”一氧化碳感測器改良之研究”,碩士論文,國立台灣科技大學,(2004)。

方昱超,”金屬摻雜對SDC導氧材料的影響及其在氧氣感測器中應用的研究”,碩士論文,國立台灣科技大學,(2005)。

QR CODE