簡易檢索 / 詳目顯示

研究生: 楊承諠
Chen-Shuan Yang
論文名稱: 脈衝電鍍鉑奈米觸媒於直接成長含氮奈米碳管電極應用於高溫質子交換膜燃料電池之研究
Pulse electrodeposition of Pt on N-doped CNT electrode for PBI based HTPEMFC
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 蘇威年
Wei-Nien Su
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 脈衝電鍍聚苯咪唑高分子直接成長含氮奈米碳管高溫質子交換膜燃料電池
外文關鍵詞: pulse electro-deposition, nitrogen-doped carbon nanotube, polybenzimidazole (PBI), HTPEMFC
相關次數: 點閱:247下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由脈衝電鍍與改良之電鍍夾具得到均勻分布之奈米鉑觸媒顆粒,鉑觸媒附載材料為含有定量聚苯咪唑高分子(Polybenzimidazole,PBI)與磷酸之直接成長含氮奈米碳管,之後此電極應用於高溫質子交換膜燃料電池的陰極端。在經過電鍍夾具之轉速、通電電位、通電時間、斷電時間等參數測試分析後,所得到最佳之脈衝電鍍條件為在電位0V下斷電時間(Off-time)0.01秒,電位-1.2 V下通電時間(On-time)0.2秒,夾具轉速300 rpm。而鉑奈米觸媒顆粒經由XRD分析晶粒尺寸為8 nm左右。接著再利用CV、SEM、TEM等儀器分析觀察其觸媒特性、分散性以及活性。從SEM以及TEM影像中清楚發現觸媒是均勻分散在奈米碳管表面。CV量測結果顯示ECSA為161 cm2/mg。本研究進一步發現附載上定量的PBI和磷酸後,將最佳條件之鉑觸媒電鍍至電極上,其鉑奈米觸媒晶粒尺寸降至5~6 nm,ECSA提升至260 cm2/mg。在高溫質子交換膜燃料電池發電性能部份,全電池效能高達620 mW/cm2。利用ICP量測得到其觸媒量僅有0.14 mg/cm2。因此,其電池效能比起傳統商用之高含量白金觸媒約1 mg/cm2塗佈電極之方式高出很多。因此本研究成功利用脈衝電鍍與改良夾具有效控制觸媒顆粒大小並且得到較好的觸媒分散性,不但提升觸媒活性,也降低製備成本,更能進一步提升高溫質子交換膜燃料電池的全電池效能。


We study pulse electro-deposition for nitrogen-doped carbon nanotube directly grown on carbon cloth (CNT/CC) hybrid with polybenzimidazole (PBI), and use it as a hybrid electrode for high-temperature proton exchange membrane fuel cells (HT-PEMFC).
Pulse electro-deposition provides the deposition of uniform films as well as nanoparticles with controllable size and loading amount. When the nanoparticles are used as catalysts, their adhesion to the support, size, and electrochemical surface area (ECSA) can be tuned by electro-deposition parameters (rotation speed, potential, on time, off time). The optimized ECSA is about 161 cm2/ mg and grain size is about 8-9 nm. After adding PBI/H3PO4, ECSA is enhanced to 260 cm2/ mg, which the uniform particle morphology is achieved smaller grain size of 5-6 nm. The performance of the HTPEMFC has a maximum power density of 620 mW/cm2 with an OCP of 0.7 V. This method provides a viable route to achieve high performance HTPEMFC at relatively low cost.

摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 石油、能源危機與環境汙染之問題 1 1-2 新能源的開發 2 1-3 燃料電池的發展歷史 3 1-4 燃料電池的種類和特性 5 1-4-1 燃料電池的種類與基本特性 5 1-4-2 燃料電池的特性和優點 7 1-4-3 低溫質子交換膜燃料電池 8 1-4-4 高溫質子交換膜燃料電池 12 1-5 直接成長含氮奈米碳管電極 14 第二章原 理與文獻探討 17 2-1 電鍍 17 2-2 脈衝電鍍 18 2-2-1 脈衝電鍍的電流密度與成核成長機制 19 2-2-2 脈衝電鍍的質傳 21 2-2-3 脈衝電鍍的雙擴散層 21 2-3 電鍍系統中其他影響參數 22 2-3-1 攪拌對電鍍之影響 22 2-3-2 溫度對電鍍之影響 23 2-3-3 pH值對電鍍之影響 24 2-3-4 支持電解液對電鍍之影響 25 2-4文獻回顧與實驗動機 25 2-4-1文獻回顧 25 2-4-2實驗動機 31 第三章 實驗步驟與研究方法 32 3-1 實驗流程 32 3-2 實驗藥品及材料 34 3-3 實驗儀器 35 3-3-1 射頻磁控濺鍍機(RF magnetron sputtering system) 35 3-3-2 微波電漿化學氣相沈積系統(MPCVD) 37 3-4分析鑑定儀器 39 3-4-1 場發射掃描式電子顯微鏡(SEM) 39 3-4-2 穿透式電子顯微鏡(Transmission Electron Microscope) 40 3-4-3 電漿偶合原子發射光譜儀 (ICP) 41 3-4-4 恆電位分析儀(Potentiostat) 42 3-4-5 X光繞射分析儀(X ray diffraction Spectrometer) 45 3-4-6 質子交換膜燃料電池分析儀 47 3-4-7雷射奈米粒徑暨界面電位量測儀(Malvern Zetasizer) 48 第四章 結果與討論 49 4-1 直接成長奈米碳管電極 49 4-2 脈衝電鍍觸媒於直接成長奈米碳管電極 50 4-2-1 電鍍夾具和電鍍系統 50 4-2-2 脈衝電鍍之參數設計 51 4-2-3 不同電鍍夾具轉速測試(Rotation speed) 52 4-2-4 不同通電電位測試(Potential) 56 4-2-5 不同通電時間測試(On-time) 60 4-2-6 不同斷電時間測試(Off-time) 63 4-2-7 不同電鍍夾具轉速測試(Rotation speed) 65 4-2-8 穿透式電子顯微鏡分析 71 4-3 高溫質子交換膜燃料電池 72 4-3-1 PBI與直接成長含氮奈米碳管電極分析 72 4-3-2 高溫質子交換膜燃料電池測試 75 第五章 結論 77 參考文獻 78

[1] 王茹涵, 後石油時代-21世紀的能源新思維, 科學發展,423(2008).
[2] 衣寶廉, 燃料電池原理與應用, 五南圖書出版公司. (2005) p.1.
[3] A.L. Wolf vielstich, Hubert A. Gasteiger, Handbook of Fuel cell, New York: John Wiley & Sons. 1, 4 (2003) p.306
[4] http://www.energytrend.com.tw/showreport/20130301-5772.html.
[5] http://www.rudoch.klusik.cz.
[6] M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (2012) 43-51.
[7] P. Choi, N.H. Jalani, R. Datta, Thermodynamics and Proton Transport in Nafion: II. Proton Diffusion Mechanisms and Conductivity. Journal of The Electrochemical Society, 152 (2005) E123-E130.
[8] 黃信智, 自合成咕咯系列觸媒應用於燃料電池陰極端之研究, 國立台北科技大學材料科學與工程研究所 (2011).
[9] S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-t. Lau, J.H. Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Progress in Polymer Science, 36 (2011) 813-843.
[10] Y. Shao, G. Yin, Z. Wang, Y. Gao, Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. Journal of Power Sources, 167 (2007) 235-242.
[11]http://zh.wikipedia.org/wiki/%E7%83%AD%E7%94%B5%E8%81%94%E4%BA%A7.
[12] H. Zhang, P.K. Shen, Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112 (2012) 2780-2832.
[13] Y.-L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 151 (2004) A8-A16.
[14] L.C. Chen, C.Y. Wen, C.H. Liang, W.K. Hong, K.J. Chen, H.C. Cheng, C.S. Shen, C.T. Wu, K.H. Chen, Controlling Steps During Early Stages of the Aligned Growth of Carbon Nanotubes Using Microwave Plasma Enhanced Chemical Vapor Deposition. Advanced Functional Materials, 12 (2002) 687-692.
[15] C.H. Wang, H.Y. Du, Y.T. Tsai, C.P. Chen, C.J. Huang, L.C. Chen, K.H. Chen, H.C. Shih, High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC. Journal of Power Sources, 171 (2007) 55-62.
[16] C.-H. Wang, H.-C. Shih, Y.-T. Tsai, H.-Y. Du, L.-C. Chen, K.-H. Chen, High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth. Electrochimica Acta, 52 (2006) 1612-1617.
[17] H.-Y. Du, C.-H. Wang, H.-C. Hsu, S.-T. Chang, S.-C. Yen, L.-C. Chen, B. Viswanathan, K.-H. Chen, High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell. Journal of Materials Chemistry, 21 (2011) 2512-2516.
[18] 田福助, 電化學基本原理與應用,五洲出版有限公司(2004).
[19] http://electroplating.wikispaces.com.
[20] http://zh.wikipedia.org/wiki/%E7%94%B5%E9%95%80.
[21] M.S. Chandrasekar, M. Pushpavanam, Pulse and pulse reverse plating conceptual, advantages and applications. Electrochimica Acta, 53 (2008) 3313-3322.
[22] S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo, D.-Y. Kim, Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta, 51 (2006) 3814-3819.
[23] K.H. Choi, H.S. Kim, T.H. Lee, Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition. Journal of Power Sources, 75 (1998) 230-235.
[24] 林漢威, 單電流脈衝電鍍制備不同原子比鉑釕於碳之伏安研究,國立台北科技大學化工程研究所 (2005).
[25] H. Kim, N.P. Subramanian, B.N. Popov, Preparation of PEM fuel cell electrodes using pulse electrodeposition. Journal of Power Sources, 138 (2004) 14-24.
[26] C.T.J. Low, R.G.A. Wills, F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface and Coatings Technology, 201 (2006) 371-383.
[27] E. Patrick, M.E. Orazem, J.C. Sanchez, T. Nishida, Corrosion of tungsten microelectrodes used in neural recording applications. Journal of Neuroscience Methods, 198 (2011) 158-171.
[28] G. Lu, G. Zangari, Electrodeposition of platinum nanoparticles on highly oriented pyrolitic graphite: Part II: Morphological characterization by atomic force microscopy. Electrochimica Acta, 51 (2006) 2531-2538.
[29] G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu, Z.-g. Shao, Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI. Journal of Power Sources, 162 (2006) 547-552.
[30] O.E. Kongstein, T. Berning, B. Borresen, F. Seland, R. Tunold, Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy, 32 (2007) 418-422.
[31] J. Lobato, P. Canizares, M.A. Rodrigo, J.J. Linares, F.J. Pinar, Study of the influence of the amount of PBI-H3PO4 in the catalytic layer of a high temperature PEMFC. International Journal of Hydrogen Energy, 35 (2010) 1347-1355.
[32] M. Boaventura, A. Mendes, Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes. International Journal of Hydrogen Energy, 35 (2010) 11649-11660.
[33] M. Mamlouk, K. Scott, Phosphoric acid-doped electrodes for a PBI polymer membrane fuel cell. International Journal of Energy Research, 35 (2007) 507-519.
[34] M.S. Kondratenko, M.O. Gallyamov, A.R. Khokhlov, Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy. International Journal of Hydrogen Energy, 37 (2012) 2596-2602.
[35] S. Woo, I. Kim, J.K. Lee, S. Bong, J. Lee, H. Kim, Preparation of cost-effective Pt-Co electrodes by pulse electrodeposition for PEMFC electrocatalysts. Electrochimica Acta, 56 (2011) 3036-3041.
[36] N. Rajalakshmi, K.S. Dhathathreyan, Nanostructured platinum catalyst layer prepared by pulsed electrodeposition for use in PEM fuel cells. International Journal of Hydrogen Energy, 33 (2008) 5672-5677.
[37] C. Coutanceau, A.F. Rakotondrainibe, A. Lima, E. Garnier, S. Pronier, J.M. Leger, C. Lamy, Preparation of Pt-Ru bimetallic anodes by galvanostatic pulse electrodeposition: characterization and application to the direct methanol fuel cell. Journal of Applied Electrochemistry, 34 (2004) 61-66.
[38] 鄒威民, 單電流脈衝電鍍製備奈米鉑-釕/碳陽極之甲醇電氧化研究,國立台北科技大學化工程研究所. (2004).
[39] 侯仁健, 單電流脈衝電鍍鉑於奈米碳管/碳之電氧化研究, 國立台北科技大學化工程研究所. (2005).
[40] J.-J. Jow, S.-W. Yang, H.-R. Chen, M.-S. Wu, T.-R. Ling, T.-Y. Wei, Co-electrodeposition of Pt-Ru electrocatalysts in electrolytes with varying compositions by a double-potential pulse method for the oxidation of MeOH and CO. International Journal of Hydrogen Energy, 34 (2009) 665-671.
[41] M.-C. Tsai, T.-K. Yeh, C.-H. Tsai, Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum–ruthenium nanoparticles prepared by pulsed electrodeposition. International Journal of Hydrogen Energy, 36 (2011) 8261-8266.
[42] M.M.E. Duarte, A.S. Pilla, J.M. Sieben, C.E. Mayer, Platinum particles electrodeposition on carbon substrates. Electrochemistry Communications, 8 (2006) 159-164.
[43] 王凱正, 田口實驗法於單電流脈衝電鍍鉑之研究,國立台北科技大學化工程研究所. (2006).
[44] Z.Q. Tian, S.P. Jiang, Y.M. Liang, P.K. Shen, Synthesis and Characterization of Platinum Catalysts on Multiwalled Carbon Nanotubes by Intermittent Microwave Irradiation for Fuel Cell Applications. The Journal of Physical Chemistry B, 110 (2006) 5343-5350.
[45] H.Y. Du, C.H. Wang, H.C. Hsu, S.T. Chang, U.S. Chen, S.C. Yen, L.C. Chen, H.C. Shih, K.H. Chen, Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation. Diamond and Related Materials, 17 (2008) 535-541.
[46] M. Okamoto, T. Fujigaya, N. Nakashima, Design of an Assembly of Poly(benzimidazole), Carbon Nanotubes, and Pt Nanoparticles for a Fuel-Cell Electrocatalyst with an Ideal Interfacial Nanostructure. Small, 5 (2009) 735-740.
[47] K. Matsumoto, T. Fujigaya, K. Sasaki, N. Nakashima, Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. Journal of Materials Chemistry, 21 (2010) 1187-1190.
[48] M.R. Berber, T. Fujigaya, K. Sasaki, N. Nakashima, Remarkably Durable High Temperature Polymer Electrolyte Fuel Cell Based on Poly(vinylphosphonic acid)-doped Polybenzimidazole. Sci. Rep., 3 (2013).

無法下載圖示 全文公開日期 2018/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE