簡易檢索 / 詳目顯示

研究生: 劉驍賢
Hsiao-Hsien Liu
論文名稱: CsPbX3鈣鈦礦發光二極體研究
The Study of CsPbX3 Perovskite Light Emitting Diodes
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 125
中文關鍵詞: 鈣鈦礦發光二極體
外文關鍵詞: perovskite, light emitting diodes
相關次數: 點閱:273下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要進行銫鉛溴鈣鈦礦發光二極體研究。在此元件結構中,電子與電洞將注入銫鉛溴鈣鈦礦薄膜進行幅射再結合以做為發光層;電子傳輸層則使用自行合成的氧化鋅奈米粒子;電洞注入層與傳輸層則分別使用聚(苯乙烯磺酸)陰離子摻雜的聚(3,4-亞乙基二氧噻吩)與聚(N-乙烯基咔唑)。在銫鉛溴鈣鈦礦薄膜的製備上,以一步驟溶液旋塗沉積法進行;此外,在進行溴化銫鉛鈣鈦礦薄膜製備時,經由添加聚乙二醇與調整前驅物組成比例改善薄膜性質,並藉由紫外光-可見光吸收光譜儀、微區螢光光譜儀與X-光繞射圖譜進行光學、光電性質以及結構分析。在光致激發螢光光譜量測,其激發光約在527 nm,而所組裝完成的銫鉛溴鈣鈦礦發光二極體,在量測元件性能後,可知當前驅物溶液中的溴化銫與溴化鉛以莫爾比例為3:2,並加入0.005 g 的聚乙二醇,可獲得在4.5 V偏壓下,電流密度為560.68 mA/cm2與0.18 cd/m2輝度值,電流密度與輝度值。為了製備出不同發光波段的發光二極體,將前驅物溶液中部分溴化物替換成碘化物,即可以溶液旋塗沉積法製備出銫鉛溴碘鈣鈦礦薄膜。其光致激發螢光可調整至527 nm~690 nm。同樣地,將銫鉛溴碘鈣鈦礦薄膜製備組裝成發光二極體,並探討其發光二極體特性。


In this work, we focused on the studies of cesium lead bromide (CsPbBr3) perovskite light-emitting diode (LED). In the architecture of CsPbBr3 LED, CsPbBr3 thin film can be regarded as emission layer because electrons and holes will inject into CsPbBr3 thin film for radiation recombination; otherwise, home-made zinc oxide (ZnO) nanoparticles synthesized by wet chemical reaction was employed as electron transport layer (ETL); poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and poly(N-vinylcarbazole) (PVK) were used as hole injection layer (HIL) and hole transport layer (HTL), respectively. For preparation of CsPbBr3 thin film, one-step spin coating was employed. The properties of CsPbBr3 thin film were modulated by the molar ratio of precursors and the amount of additive, poly(oxyethylene) (PEO). The optical, optoelectronic and structural analyses were conducted by UV-visible absorption spectroscopy, micro-photoluminescence (-PL) and X-ray diffraction pattern (XRD), respectively. From -PL spectrum, we could obtain the emission of CsPbBr3 thin film was around 527 nm. When CsPbBr3 thin film was assembled as LED, the current density and brightness of CsPbBr3-LED under 4.5 V bias could achieve 560.68 mA/cm2 and 0.18 cd/m2 when the molar ratio of CsBr to PbBr2 and PEO addition amount were 3 : 2 and 0.005 g, respectively. To adjust the emission wavelengths of perovskite LED, part of bromide precursor was replaced by iodide precursor. CsPbBr3-xIx thin film could be prepared by spin coating and the emission wavelengths could cover 527~690 nm. Finally, CsPbBr3-xIx thin films were assembled as LED for analyzing the performance of electroluminescences.

中文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章、緒論 1-1前言 1-2研究動機與目的 第二章、理論基礎與文獻回顧 2-1半導體材料 2-1-1 pn接面(pn junction) 2-1-1-1二極體特性曲線 2-2鈣鈦礦材料 2-2-1鈣鈦礦結構 2-2-2製備CsPbBr3薄膜 2-2-2-1一步驟溶液沉積法(One step solution deposition) 2-2-2-2二步驟溶液沉積法(Two-step solution deposition) 2-2-2-3氣相沉積法(Vapor deposition) 2-2-3溴化銫比例對鈣鈦礦薄膜的影響 2-2-4高分子添加對鈣鈦礦薄膜的影響 2-2-5製備CsPbI3薄膜 2-2-6不同溴/碘比例對鈣鈦礦薄膜的影響 2-3發光二極體 2-3-1發光二極體發光機制 2-3-2發光二極體結構簡介 2-3-3發光二極體設計參數概述 2-3-3-1電極 2-3-3-2電洞注入層/電洞傳輸層 2-3-3-3電子注入層/電子傳輸層 2-3-3-4發光二極體各層結構能帶對應位置 2-3-4發光二極體性能分析 2-3-4-1最大亮度(Maximum luminance,Lmax) 2-3-4-2啟動電壓(Turn-on voltage,VT) 2-3-4-3電流效率(Current efficiency,CE) 2-3-4-4外部量子效率(External quantum efficiency,EQE) 2-3-5鈣鈦礦發光二極體 第三章、實驗設計 3-1實驗流程圖 3-2實驗藥品與設備儀器 3-2-1實驗藥品 3-2-2實驗設備 3-3實驗分析儀器 3-4實驗步驟 3-4-1定義工作面積及清洗基板 3-4-2電洞傳輸層塗佈 3-4-3鈣鈦礦發光層塗佈 3-4-4電子傳輸層塗佈 3-4-5熱蒸鍍金屬電極 3-4-6性質量測 第四章、結果與討論 4-1載子傳輸材料塗佈製程參數分析 4-1-1電洞注入層/傳輸層材料塗佈表面型態分析 4-1-2電子傳輸層材料分析 4-2 CsPbBr3薄膜發光層製備及性質分析 4-2-1加入不同高分子材料比例對CsPbBr3薄膜性質之影響 4-2-2前驅物元素組成比例對CsPbBr3薄膜性質之影響 4-2-3 CsPbBr3發光二極體製備及性質分析 4-3 CsPbBr3-3xI3x薄膜發光層製備及性質分析 4-3-1前驅物鹵素組成比例對CsPbBr3-3xI3x薄膜性質之影響 4-3-2 CsPbBr3-3xI3x 發光二極體製備及性質分析 第五章、結論 第六章、參考文獻

S. Sun, Y. Fang, G. Kieslich, T. J. White and A. K. Cheetham. Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. Journal of Materials Chemistry A 3 (36), 18450-18455 (2015).
2. C. J. Yu, U. G. Jong, M. H. Ri, G. C. Ri and Y. H. Pae. Electronic structure and photoabsorption property of pseudocubic perovskites CH3NH3PbX3(X = I, Br) including van der Waals interaction. Journal of Materials Science 51 (21), 9849-9854 (2016).
3. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356 (6345), 1376-1379 (2017).
4. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng. Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Advanced Materials 27 (44), 7162-7167 (2015).
5. J. H. Li, L. M. Xu, T. Wang, J. Z. Song, J. W. Chen, J. Xue, Y. H. Dong, B. Cai, Q. S. Shan, B. N. Han and H. B. Zeng. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Advanced Materials 29 (5) (2017).
6. Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen, B. Han and H. Zeng. All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C 5 (18), 4565-4570 (2017).
7. J. Ding, X. Cheng, L. Jing, T. Zhou, Y. Zhao and S. Du. Polarization-Dependent Optoelectronic Performances in Hybrid Halide Perovskite MAPbX3 (X = Br, Cl) Single-Crystal Photodetectors. American Chemical Society Applied Materials & Interfaces 10 (1), 845-850 (2018).
8. Y. Li, Y. Li, J. Shi, H. Zhang, J. Wu, D. Li, Y. Luo, H. Wu and Q. Meng. High Quality Perovskite Crystals for Efficient Film Photodetectors Induced by Hydrolytic Insulating Oxide Substrates. Advanced Functional Materials 28 (10), 1705220 (2018).
9. C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang and J. Du. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Materials and Solar Cells 172 (Supplement C), 341-346 (2017).
10. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng and K. Sun. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40 (Supplement C), 195-202 (2017).
11. S. A. Veldhuis, P. P. Boix, N. Yantara, M. J. Li, T. C. Sum, N. Mathews and S. G. Mhaisalkar. Perovskite Materials for Light-Emitting Diodes and Lasers. Advanced Materials 28 (32), 6804-6834 (2016).
12. A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury and A. Nag. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angewandte Chemie-International Edition 54 (51), 15424-15428 (2015).
13. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters 15 (8), 5635-5640 (2015).
14. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
15. L. Atourki, E. Vega, M. Mollar, B. Mari, H. Kirou, K. Bouabid and A. Ihlal. Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3-xIx (0 <= x <= 1). Journal of Alloys and Compounds 702, 404-409 (2017).
16. Q. A. Akkerman, S. G. Motti, A. R. S. Kandada, E. Mosconi, V. D'Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato and L. Manna. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society 138 (3), 1010-1016 (2016).
17. S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews and S. G. Mhaisalkar. Perovskite Materials for Light‐Emitting Diodes and Lasers. Advanced Materials 28 (32), 6804-6834 (2016).
18. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131 (17), 6050-+ (2009).
19. S. Gonzalez-Carrero, R. E. Galian and J. Pérez-Prieto. Organic-inorganic and all-inorganic lead halide nanoparticles [Invited]. Optics Express 24 (2), A285-A301 (2016).
20. H. Cho, J. S. Kim, Y.-H. Kim and T.-W. Lee. Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films. Journal of Information Display 19 (1), 53-60 (2018).
21. A. S. B. R. G. R. Roy. The perovskite structure –a review of its role in ceramic science and technology. Material Research Innovations 4 (1), 3–26 (2000).
22. S. Shi, Y. Li, X. Li and H. Wang. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons 2 (4), 378-405 (2015).
23. V. M. Goldschmidt. Die Gesetze der Krystallochemie. Die Naturwissenschaften 14 (21), 477-485 (1926).
24. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials 28 (1), 284-292 (2016).
25. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology 9, 687 (2014).
26. S. B. Natalia Yantara, Fei Yan, Dharani Sabba, Herlina A. Dewi, Nripan Mathews, Pablo P. Boix, Hilmi Volkan Demir, and Subodh Mhaisalkar. Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. J. Phys. Chem. Lett. 6, 4360-4364 (2015).
27. F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li and F. Zhu. Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes. Journal of Materials Chemistry C (2018).
28. M. L. De Giorgi, A. Perulli, N. Yantara, P. P. Boix and M. Anni. Amplified Spontaneous Emission Properties of Solution Processed CsPbBr3 Perovskite Thin Films. The Journal of Physical Chemistry C 121 (27), 14772-14778 (2017).
29. N. F. J. Yan Fong Ng, Natalia Yantara, Mingjie Li, Venkata Kameshwar Rao Irukuvarjula, Hilmi Volkan Demir, Tze Chien Sum, Subodh Mhaisalkar, and Nripan Mathews. Rapid Crystallization of All-Inorganic CsPbBr3 Perovskite for High-Brightness Light-Emitting Diodes. American Chemical Society Omega 2, 2757-2764 (2017).
30. H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J.-M. Heo, S. Ahn and T.-W. Lee. High-Efficiency Solution-Processed Inorganic Metal Halide Perovskite Light-Emitting Diodes. Advanced Materials, 1700579-n/a (2017).
31. X.-J. Ma, Z.-Q. Wang, Z.-Y. Xiong, Y. Zhang, F.-X. Yu, P. Chen, Z.-H. Xiong and C.-H. Gao. 30-Fold efficiency enhancement achieved in the perovskite light-emitting diodes. The Royal Society of Chemistry Advances 7 (80), 50571-50577 (2017).
32. S. G. R. Bade, J. Q. Li, X. Shan, Y. C. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. W. Gao, B. W. Ma, K. Hanson, T. Siegrist, C. Y. Xu and Z. B. Yu. Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. American Chemical Society Nano 10 (2), 1795-1801 (2016).
33. Y. Z. Chen Wu, Tian Wu, Muyang Ban, Vicenzo Pecunia, Yujie Han, Qipeng Liu, Tao Song, Steffen Duhm, and Baoquan Sun. Improved Performance and Stability of All-Inorganic Perovskite Light-Emitting Diodes by Antisolvent Vapor Treatment. Advanced Functional Materials, 1700338 (2017).
34. B. Jeong, H. Han, Y. J. Choi, S. H. Cho, E. H. Kim, S. W. Lee, J. S. Kim, C. Park, D. Kim and C. Park. All-Inorganic CsPbI3 Perovskite Phase-Stabilized by Poly(ethylene oxide) for Red-Light-Emitting Diodes. Advanced Functional Materials, 1706401 (2018).
35. J. Q. Li, S. G. R. Bade, X. Shan and Z. B. Yu. Single-Layer Light-Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Advanced Materials 27 (35), 5196-5202 (2015).
36. Y. C. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. Perez-Orive, Y. J. Du, L. Tan, K. Hanson, B. W. Ma and H. W. Gao. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes. Advanced Materials 28 (40), 8983-8989 (2016).
37. L. Song, X. Guo, Y. Hu, Y. Lv, J. Lin, Z. Liu, Y. Fan and X. Liu. Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films. J. Phys. Chem. Lett. 8, 4148-4154 (2017).
38. Z. Wang, Z. Luo, C. Zhao, Q. Guo, Y. Wang, F. Wang, X. Bian, A. Alsaedi, T. Hayat and Z. a. Tan. Efficient and Stable Pure Green All-Inorganic Perovskite CsPbBr3 Light-Emitting Diodes with a Solution-Processed NiOx Interlayer. The Journal of Physical Chemistry C 121 (50), 28132-28138 (2017).
39. Z.-J. Yong, Y. Zhou, J.-P. Ma, Y.-M. Chen, J.-Y. Yang, Y.-L. Song, J. Wang and H.-T. Sun. Controlling Crystallization of All-Inorganic Perovskite Films for Ultralow-Threshold Amplification Spontaneous Emission. American Chemical Society Applied Materials & Interfaces 9 (38), 32920-32929 (2017).
40. Y. F. Ng, S. A. Kulkarni, S. Parida, N. F. Jamaludin, N. Yantara, A. Bruno, C. Soci, S. G. Mhaisalkar and N. Mathews. Highly Efficient Cs-based Perovskite Light-Emitting Diodes Enabled by Energy Funnelling. Chemical Communications 53, 12004-12007 (2017).
41. J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, H. He, D. Di, C. Lin, Y. Cheng, J. Wang and Y. Jin. Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3 (X = Br, I) Nanoplates with Controlled Thicknesses. American Chemical Society Nano 11 (11), 11100-11107 (2017).
42. F.-X. Yu, Y. Zhang, Z.-Y. Xiong, X.-J. Ma, P. Chen, Z.-H. Xiong and C.-H. Gao. Full coverage all-inorganic cesium lead halide perovskite film for high-efficiency light-emitting diodes assisted by 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene. Organic Electronics 50, 480-484 (2017).
43. X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai, D. Bian, S. Chen, K. Wang and X. W. Sun. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering. Nano Energy 37, 40-45 (2017).
44. Y. F. Ng, W. Jian Neo, N. Jamaludin, N. Yantara, S. Mhaisalkar and N. Mathews. Enhanced Coverage of All-Inorganic Perovskite CsPbBr3 through Sequential Deposition for Green LEDs. Energy Technology 5, 1859-1865 (2017).
45. D. Liu, Z. Hu, W. Hu, P. Wangyang, K. Yu, M. Wen, Z. Zu, J. Liu, M. Wang, W. Chen, M. Zhou, X. Tang and Z. Zang. Two-step method for preparing all-inorganic CsPbBr3 perovskite film and its photoelectric detection application. Materials Letters 186, 243-246 (2017).
46. D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou and W. Hu. Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device. American Chemical Society Applied Materials & Interfaces 9 (7), 6171-6176 (2017).
47. A. M. Tirmzi, R. P. Dwyer, T. Hanrath and J. A. Marohn. Coupled Slow and Fast Charge Dynamics in Cesium Lead Bromide Perovskite. American Chemical Society Energy Letters 2 (2), 488-496 (2017).
48. P. Teng, X. Han, J. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang and T. Yu. Elegant Face-Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based All-Inorganic Planar Perovskite Solar Cells. American Chemical Society Applied Materials & Interfaces 10 (11), 9541-9546 (2018).
49. Y. L. Wang, X. Guan, D. H. Li, H. C. Cheng, X. D. Duan, Z. Y. Lin and X. F. Duan. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Research 10 (4), 1223-1233 (2017).
50. J. Chen, Y. Fu, L. Samad, L. Dang, Y. Zhao, S. Shen, L. Guo and S. Jin. Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters 17 (1), 460-466 (2017).
51. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. L. Zhang, X. Zhu and A. Pan. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Research 10(10), 3385-3395 (2017).
52. H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun and A. Pan. Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. American Chemical Society Nano 11 (2), 1189-1195 (2017).
53. Y. Ling, L. Tan, X. Wang, Y. Zhou, Y. Xin, B. Ma, K. Hanson and H. Gao. Composite Perovskites of Cesium Lead Bromide for Optimized Photoluminescence. J. Phys. Chem. Lett. 8 (14), 3266-3271 (2017).
54. S. Y. Luchkin, A. F. Akbulatov, L. A. Frolova, S. A. Tsarev, P. A. Troshin and K. J. Stevenson. Spatially-resolved nanoscale measurements of grain boundary enhanced photocurrent in inorganic CsPbBr3 perovskite films. Solar Energy Materials and Solar Cells 171, 205-212 (2017).
55. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 15 (6), 3692-3696 (2015).
56. Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang and Z. Lu. Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability. Nanoscale 9 (22), 7391-7396 (2017).
57. H. C. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend and T. W. Lee. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350 (6265), 1222-1225 (2015).
58. S. Dastidar, C. J. Hawley, A. D. Dillon, A. D. Gutierrez-Perez, J. E. Spanier and A. T. Fafarman. Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide. J. Phys. Chem. Lett. 8 (6), 1278-1282 (2017).
59. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway and L. Qian. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics 9, 259-266 (2015).
60. J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I. F. Lin and S.-F. Horng. All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Organic Electronics 10 (8), 1610-1614 (2009).
61. W. Wang, H. Peng and S. Chen. Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes. Journal of Materials Chemistry C 4 (9), 1838-1841 (2016).
62. W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang and R. A. J. Janssen. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry B 109 (19), 9505-9516 (2005).
63. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee and C. Lee. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Letters 12 (5), 2362-2366 (2012).
64. Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian, Y. Zhang, C. Shan and G. Du. Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes. American Chemical Society Nano 12 (2), 1462-1472 (2018).
65. H. Ghorbani, F. Parsa Mehr, H. Pazoki and B. Mosavar Rahmani. Synthesis of ZnO Nanoparticles by Precipitation Method. Oriental Jourmal of Chemistry 31, 1219-1221 (2015).
66. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, W. Lei, F. Xu and Z. Zhang. Flexible quantum dot light emitting diodes based on ZnO nanoparticles. The Royal Society of Chemistry Advances 5 (100), 82192-82198 (2015).
67. S. Lee, J. H. Park, B. R. Lee, E. D. Jung, J. C. Yu, D. Di Nuzzo, R. H. Friend and M. H. Song. Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic–Inorganic Perovskites in Light-Emitting Diodes. J. Phys. Chem. Lett. 8 (8), 1784-1792 (2017).
68. X. F. Zhao, B. H. Zhang, R. Y. Zhao, B. Yao, X. J. Liu, J. Liu and Z. Y. Xie. Simple and Efficient Green-Light-Emitting Diodes Based on Thin Organolead Bromide Perovskite Films via Tuning Precursor Ratios and Postannealing Temperature. J. Phys. Chem. Lett. 7 (21), 4259-4266 (2016).
69. Q. V. Le, M. Park, W. Sohn, H. W. Jang and S. Y. Kim. Investigation of Energy Levels and Crystal Structures of Cesium Lead Halides and Their Application in Full‐Color Light‐Emitting Diodes. Advanced Electronic Materials 3 (1), 1600448 (2017).
70. X. Jin, X. Zhang, H. Fang, W. Deng, X. Xu, J. Jie and X. Zhang. Facile Assembly of High‐Quality Organic–Inorganic Hybrid Perovskite Quantum Dot Thin Films for Bright Light‐Emitting Diodes. Advanced Functional Materials 28 (11), 1705189 (2018).
71. H. Huang, F. Zhao, L. Liu, F. Zhang, X.-g. Wu, L. Shi, B. Zou, Q. Pei and H. Zhong. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. American Chemical Society Applied Materials & Interfaces 7 (51), 28128-28133 (2015).
72. R. L. Z. Hoye, M. R. Chua, K. P. Musselman, G. Li, M. L. Lai, Z. K. Tan, N. C. Greenham, J. L. MacManus‐Driscoll, R. H. Friend and D. Credgington. Enhanced Performance in Fluorene‐Free Organometal Halide Perovskite Light‐Emitting Diodes using Tunable, Low Electron Affinity Oxide Electron Injectors. Advanced Materials 27 (8), 1414-1419 (2015).
73. J.-W. Lee, Y. J. Choi, J.-M. Yang, S. Ham, S. K. Jeon, J. Y. Lee, Y.-H. Song, E. K. Ji, D.-H. Yoon, S. Seo, H. Shin, G. S. Han, H. S. Jung, D. Kim and N.-G. Park. In-Situ Formed Type I Nanocrystalline Perovskite Film for Highly Efficient Light-Emitting Diode. American Chemical Society Nano 11 (3), 3311-3319 (2017).
74. Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im and T. W. Lee. Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Advanced Materials 27 (7), 1248-1254 (2015).
75. X. Qin, H. L. Dong and W. P. Hu. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China-Materials 58 (3), 186-191 (2015).
76. J. C. Yu, D. B. Kim, E. D. Jung, B. R. Lee and M. H. Song. High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale 8 (13), 7036-7042 (2016).
77. J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend and W. Huang. Interfacial Control Toward Efficient and Low‐Voltage Perovskite Light‐Emitting Diodes. Advanced Materials 27 (14), 2311-2316 (2015).
78. Z. Xiao, R. Kerner, L. Zhao, N. L. Tran, K. Min Lee, T.-W. Koh, G. D. Scholes and B. Rand. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics 11, 108-115 (2017).
79. L. N. Quan, Y. Zhao, F. P. García de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan, H. Tan, J. Pan, M. Yuan, O. M. Bakr, Z. Lu, D. H. Kim and E. H. Sargent. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters 17 (6), 3701-3709 (2017).
80. X. Ji, X. Peng, Y. Lei, Z. Liu and X. Yang. Multilayer light emitting devices with organometal halide perovskite: Polymer composite emission layer: The relationship of device performance with the compositions of emission layer and device configurations. Organic Electronics 43, 167-174 (2017).
81. S. G. R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, K. Hanson, T. Siegrist, C. Xu and Z. Yu. Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. American Chemical Society Nano 10 (2), 1795-1801 (2016).
82. N. Wang, Cheng, L., Ge, R., Zhang, S., Miao, Y., Zou, W., Yi, C., et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. . Nature Photonics 10 (11), 699-704 (2016).
83. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y.-B. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. Ha Kim and E. Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology 11, 872–877 (2016).
84. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr. Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface Engineering. Advanced Materials 28 (39), 8718-8725 (2016).
85. X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang and X. W. Sun. All‐Inorganic Perovskite Nanocrystals for High‐Efficiency Light Emitting Diodes: Dual‐Phase CsPbBr3‐CsPb2Br5 Composites. Advanced Functional Materials 26 (25), 4595-4600 (2016).
86. H. Huang, H. Lin, S. V. Kershaw, A. S. Susha, W. C. H. Choy and A. L. Rogach. Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. J. Phys. Chem. Lett. 7 (21), 4398-4404 (2016).
87. T. Chiba, K. Hoshi, Y.-J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido. High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. American Chemical Society Applied Materials & Interfaces 9 (21), 18054-18060 (2017).
88. L. Q. Zhang, X. L. Yang, Q. Jiang, P. Y. Wang, Z. G. Yin, X. W. Zhang, H. R. Tan, Y. Yang, M. Y. Wei, B. R. Sutherland, E. H. Sargent and J. B. You. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications 8, 8 (2017).
89. J. Si, Y. Liu, N. Wang, M. Xu, J. Li, H. He, J. Wang and Y. Jin. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research 10 (4), 1329-1335 (2017).
90. J. Li, X. Shan, S. G. R. Bade, T. Geske, Q. Jiang, X. Yang and Z. Yu. Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness. J. Phys. Chem. Lett. 7 (20), 4059-4066 (2016).
91. S. Yuequn, L. Gang, L. Weimin and N. Zhijun. Quasi‐2D Inorganic CsPbBr3 Perovskite for Efficient and Stable Light‐Emitting Diodes. Advanced Functional Materials 28 (22), 1801193 (2018).

無法下載圖示 全文公開日期 2023/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE