簡易檢索 / 詳目顯示

研究生: 王憲柏
Hsien-Po Wang
論文名稱: 以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究
Surface Hardness Treatment on SKD11 Die Steel by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 王朝正
Chaur-Jeng Wang
丘群
Chun Chiu
劉志宏
Chi-Hung Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 常壓電漿噴射束表面硬化處理氮氣
外文關鍵詞: Atmospheric Pressure Plasma Jet, Surface Hardening, Nitrogen
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究運用氮氣氫氣混合氣體通入常壓電漿噴射束中對SKD11模具鋼做表面處理使表面硬化,在本實驗中通入不同氫氣比例之氮氣電漿,對SKD11模具鋼做表面處理,探討不同氫氣比例之氮氣電漿對於硬化效果之影響。使用維克氏硬度機分析試片表面與剖面之硬度變化、以光學顯微鏡分析試片之金相組織,利用X光繞射儀(XRD)、高解析度場發射掃描式電子顯微鏡(FE-SEM)、電子微探儀(EPMA)與X光光電子能譜儀(XPS)分析氮原子是否存在於試片表面,再以此分析氮原子是否有擴散到鋼材內部,並透過光學放射光譜儀(OES)探討使用混合氣體所產生之電漿對SKD11模具鋼之影響,最後再深入瞭解常壓電漿噴射束對SKD11模具鋼做硬化處理之反應機制。
本實驗已經成功的使用常壓電漿噴射束對SKD11模具鋼做表面硬化處理,根據實驗結果,發現硬化層之硬度會隨氫氣比例而改變,透過光學放射光譜儀分析電漿之物種,發現NH是控制硬化機制的主要關鍵,利用XRD探究出當氫氣比例達到一定值時,可以使氧化鐵還原成純鐵,但是當氫氣比例過高時,表面硬化之硬度會呈現出下降之趨勢。在研究中也發現了常壓電漿噴射束對SKD11做表面硬化處理之時間比傳統製程還來的短,即可達到高硬度之優異效果。


In this study, we used surface hardening on SKD11 die steel by atmospheric pressure plasma jet (APPJ) using the mixture (N2/H2) gas as working gas. The effect of hydrogen concentration in the working gas on the hardening effect of SKD11 die steel was investigated. The hardness profile and the microstructure were measured using a Vickers hardness tester and an optical microscope. The evolution of surface crystalline was observed using X-ray Diffractometer (XRD). The nitrogen distribution inside the bulk was measured using an Electron Probe Micro Analyzer (EPMA). The Energy Dispersive Spectroscopy (EDS) was carried out to determine the elemental composition of the nitrogen in the SKD11 die steel. The Optical Emission Spectroscopy (OES) was used to detect the optical emission of plasma species from atmospheric pressure plasma jet. Finally, we proposed the reaction mechanism of the surface hardening of SKD11 die steel by the atmospheric pressure plasma jet.
According to the materials characteristics, the surface hardness of SKD11 die steel was apparently raised by the atmospheric pressure plasma jet with varying the H2 gas content. Besides, hydrogen gas inside the plasma region generated by APPJ process was not only raised the surface hardness of SKD11 die steel, but also decreased Fe2O3 formation on the substrate surface. From OES observation, we proposed that the NH radicals were the key to control the hardening mechanism of SKD11 die steel. In the traditional process of gas nitriding under vacuum systems, however, NH3 is successively dissociated on the iron surface to form NH2, NH, and N and H radicals to harden the steel surface. Interestingly, the hardening mechanism by atmospheric pressure plasma jet, producing NH directly from N2 and H2 mixture gas, avoiding the complicated dissociation process from NH3 for gas nitriding and surface hardening. Meanwhile, due to the direct dissociation of NH3 and forced convention by APPJ process, the treatment time was accomplished for surface hardening within 1 hour, as compared to the traditional process of gas nitriding under vacuum systems.

摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 JIS SKD11簡介 3 2.1.1 JIS SKD11模具鋼 3 2.1.2 合金元素對於鋼材之影響 3 2.2 傳統滲氮處理 6 2.2.1 滲氮法介紹 6 2.2.2 滲氮機制 8 2.2.3 氮化層組織與性能 12 2.2.4 合金元素對於氮化之影響 14 2.3 電漿介紹 17 2.3.1 電漿定義 17 2.3.2 電漿原理與七大反應 18 2.3.3 常壓電漿 23 2.3.3.1 常壓電漿噴射束原理 23 2.3.3.2 氣體崩潰機制 23 2.3.3.3 產生均勻放電的方法 27 2.3.4 常壓電漿優勢 31 第三章 實驗方法與儀器原理 32 3.1 實驗設計─流程 32 3.2 實驗材料 33 3.3 實驗儀器與原理 34 3.3.1 常壓電漿噴射束 (APPJ) 34 3.3.2 光學顯微鏡 (OM) 36 3.3.3 維克氏硬度機 37 3.3.4 光學放射光譜儀 (OES) 38 3.3.5 X光繞射儀 (XRD) 39 3.3.6 高解析度場發射掃描式電子顯微鏡 (FE-SEM) 40 3.3.7 電子微探儀(EPMA) 41 3.3.8 X光光電子能譜儀(XPS) 43 3.4 實驗步驟 44 3.4.1 基材準備 44 3.4.2 電漿處理 45 第四章 結果與討論 46 4.1 滲氮處理基本分析 46 4.1.1 表面硬度與剖面硬度分析 47 4.1.2 金相組織分析 50 4.1.3 X光繞射儀分析 54 4.2 氫氣比例對於滲氮之影響 56 4.2.1能量分散光譜儀分析 56 4.2.2電子微探儀分析 65 4.2.3 X光光電子能譜儀分析 67 4.3 電漿物種對於滲氮之影響 70 4.3.1 光學放射光譜儀分析 70 4.3.2 常壓電漿滲氮機制探討 76 第五章 結論 80 第六章 未來展望 82 參考文獻 83

[1] Germany: Industrie 4.0, European Commission, 2017.
[2] "Intuitive Surgical," [Online]. Available: https://www.intuitivesurgical.com/products/da-vinci-xi/.
[3] 陳奐晞, “金屬粉末射出成型SKD11元件機械性質分析,” 東南科技大學機電整合研究所碩士論文,p.13, 2012.
[4] 李秉育, “SKD11 與 DC53 熱處理變形之研究,” 國立高雄第一科技大學機械與自動化工程系碩士論文, p. 15, 2009.
[5] 材料手冊編審委員會, 鋼鐵材料手冊, 中國材料科學學會, 1998.
[6] 熱處理編輯委員會, 熱處理, 高立圖書有限公司, 2006.
[7] 余煥騰, 金屬熱處理學, 六合出版社, 1998.
[8] 金重勳, 熱處理, 台灣復文興業股份有限公司, 1998.
[9] 李俊毅, “以直流脈衝電漿化學氣相沉積法蒸鍍DLC薄膜於氮氧化處理AISI H13工具鋼之研究,” 國立臺北科技大學材料科學與工程研究所碩士論文, p. 4, 2012.
[10] 蔡居正, “以氧氣感測器控制白層厚度之氣體滲氮研究,” 國立臺灣大學機械工程學研究所碩士論文, p. 3-44, 2001.
[11] A. Bernal, “Investigation on Nitriding with Enphasis in Plasma Nitriding Process, Current Technology and Equipment: Review Article,” Royal Institute of Technology Materials Processing, p. 12, 2006.
[12] 機械工程手册編輯委員會, 熱處理與表面處理 : 精密製造 / 機械工程手册, 五南圖書出版股份有限公司, 2005.
[13] 黃稚惠, “氮化處理對SKH51高速鋼機械性質與微奈米級顯微結構影響之研究,” 南臺科技大學機械工程系奈米科技碩士班碩士論文, p. 22-24, 2014.
[14] C. Tendero, C. Tixier, P. Tristant , J. Desmaison and P. Leprince, "Atmospheric Pressure Plasmas," vol. 68, p. 5-30, 2009.
[15] I.H.Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, 2002.
[16] 劉志宏, “應用實驗技術法與電漿診斷技術探討電漿沉積氟碳膜製程之研究,” 中原大學化學工程學系博士論文, p. 15-21, 2005.
[17] 陳濡言, “以低溫常壓電漿表面改質軟性基板及,” 國立臺灣科技大學機械工程系碩士論文, p. 6, 2012.
[18] 郭福升, “大面積常壓電漿技術之研究,” 成功大學化學系專班碩士論文, p. 19-20, 2003.
[19] J. Y. Jeong, S. E. Babayan, J. P. V. J. Tu, R. F. Hicks and G. S. Selwyn, "Etching Materials with an Atmospheric-Pressure Plasma Jet," Plasma Sources Science and Technology, vol. 7, p. 282–285, 1998.
[20] S. E. Babayan, J. Y. Jeong, V. J. Tu, A. Schutze, M. Moravej and G. S. Selwyn, "Deposition of Silicon Dioxide Films with A Non-Equilibrium Atmospheric-Pressure Plasma Jet," Plasma Sources Science And Technology, vol. 10, p. 573–578, 2001.
[21] J. R. Roth, Industrial plasma Engineering, CRC Press, 2001.
[22] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.
[23] B. Chapman, Glow Discharge Process: sputtering and plasma etching, New York: John Wiley & Sons Inc., 1980.
[24] Y. P. Raizer, Gas Discharge Physics, New York: Spronger–Verlag, 1991.
[25] H. Raether, Avalanches and Breakdown in Gases, London: Butter Worth, 1964.
[26] W. Pfeiffer, "High-Frequency Voltage Stress of Insulation Methods of Testing," IEEE Transactions on Electrical Insulation, vol. 26, p. 239-246, 1991.
[27] S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, "Appearance of Stable Glow-Discharge in Air, Argon, Oxygen and Nitrogen at Atmospheric-Pressure Using a 50-Hz Source," Journal of Physics D-Applied Physics, vol. 26, p. 889-892, 1993.
[28] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, "Stable Glow Plasma at Atmospheric-Pressure," Journal of Physics D-Applied Physics, vol. 21, p. 838-840, 1988.
[29] T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, "The Mechanism of the Stabilization of Glow Plasma at Atmospheric-Pressure," Journal of Physics D-Applied Physics, vol. 23, p. 1125-1128, 1990.
[30] J. J. Shi and M. G. Kong, "Sheath Dynamics in Radio-Frequency Atmospheric Glow Discharges," IEEE Transactions on Plasma Science, vol. 33, p. 278-279, 2005.
[31] B. A. Niemira, “Cold Plasma Decontamination of Foods,” Food Science & Nutrition, p. I32, 2011.
[32] H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine, S. Kanazawa, "Steel Nitriding by Atmospheric-Pressure Plasma Jet Using N2/H2 Mixture Gas," Surface & Coatings Technology, p. 26, 2013.
[33] "ZEISS," [Online]. Available: https://www.zeiss.com.tw/corporate/home.html.
[34] MIT, "The Metallographic Examination," Culture, MIT Summer Institute in Materials Science and Material, p. 17, 2003.
[35] 李勝隆, 熱處理:金屬材料原理與應用, 全華圖書, 2014.
[36] J. Gong, J. Wu and Z. Guan, "Examination of the Indentation Size Effect in Low-load Vickers Hardness Testing of Ceramics," Journal of the European Ceramic Society, vol. 19, 1999.
[37] "奇毅光電有限公司," [Online]. Available: http://gieoptics.com/.
[38] 林麗娟, “X光繞射原理及其應用,” 工業材料, 編號 86, p. 104, 1994.
[39] 鄭信民、林麗娟, “X光繞射應用簡介,” 工業材料雜誌, 編號 181, p. 101-102, 2002.
[40] 施正雄, 儀器分析原理與應用, 五南圖書出版股份有限公司, 2012.
[41] 羅聖全, “科學基礎研究之重要利器─掃描式電子顯微鏡(SEM),” 科學研習月刊, 編號 52, 2013.
[42] "CAMECA," [Online]. Available: https://www.cameca.com/products/epma/technique.
[43] "X-ray Fluorescence," [Online]. Available: https://projects.exeter.ac.uk/geomincentre/estuary/Main/fluorescence.htm.
[44] E. A. H. Timmermans, J. Jonkers, A. Rodero, M. C. Quintero, A. Sola, A. Gamero, D. C. Schram, and J. A. M. van der Mullen, Spectrochimica Acta Part B, Elsevier, 1999.
[45] B. Y. Jeong, and M. H. Kim, "Effects of the Process Parameters on the Layer Formation Behavior of Plasma Nitrided Steels," Surface and Coatings Technology, vol. 141, p. 182, 2001.
[46] B. K. Pawlak, and W. Żyrnicki, "Characterization of A D.C. Titanium Tetraisopropoxide H2/N2 Plasma Using Emission Spectroscopy," Thin Solid Films, vol. 226, p. 8, 1995.
[47] K. Wagatsuma and K. Hirokawa, "High Sensitivity Measurement of Atomic Emission Spectra with an Applied Voltage Modulation Technique," Analytical Chemistry, vol. 56, p. 2734, 1984.
[48] S. Leach, M. Vervloet, A. Desprès, E. Bréheret, J. P.Hare, T. J. Dennis, H. W. Kroto, R. Taylor and D. R. M. Walton, "Electronic Spectra and Transitions of the Fullerene C60," Chemical Physics, vol. 160, 1992.
[49] 黃健倫, “電化學法探討 430 與 2205 不鏽鋼之氫擴散與破壞現象,” 國立臺灣海洋大學材料工程研究所碩士論文, p. 1, 2013.

無法下載圖示 全文公開日期 2023/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE