簡易檢索 / 詳目顯示

研究生: Vanda Lyadinskaya
Vanda - Lyadinskaya
論文名稱: 聚電解質 - 界面活性劑混和溶液的表面吸附膜之性質探討
Dilatational surface rheology of polyelectrolyte - surfactant adsorption films
指導教授: 林析右
Shi-Yow Lin
口試委員: 朱義旭
Yi-Hsu Ju
曾文祺
Wen-Chi Tseng
陳立仁
Li-Jen Chen
張鑑祥
Chien-Hsiang Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 121
中文關鍵詞: 表面流變性質動態表面張力吸附膜聚電解質/界劑溶液聚氧核醣核酸
外文關鍵詞: Dilatational surface rheology, dynamic surface tension, adsorption films, polyelectrolyte/surfactant solutions, DNA
相關次數: 點閱:414下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討由合成或天然之聚電解質(polyelectrolytes)與具相反電荷之單鏈界劑分子,於空氣-溶液界面上所形成的吸附膜,並藉由改變聚電解質及界劑之性質,進而探討吸附膜之形成機制、流變性質和表面型態等。
本研究首先以聚丙烯酸(polyacrylic acid)與直鏈烷基三甲基溴化胺(alkyltri-methylammonium bromides)之混合溶液,探討界劑分子之疏水性質對吸附行為及吸附膜之流變性質的影響。實驗結果顯示,界劑之碳氫鏈越長,表面彈性(surface elasticity)也越高;且當界劑濃度接近臨界微胞濃度時,表面彈性曲線有兩個區域最大值,分別是因為於表面形成聚電解質及界劑分子之聚集體,及多層聚集體於氣-液界面形成之結果。
因聚電解質及界劑分子溶液中靜電之吸附能障,使界劑較慢吸附至氣-液界面。因此,本研究嘗試以聚二丙烯基二甲基氯化銨(poly(diallyldimethylammonium chloride))及十二烷基硫酸鈉(sodium dodecyl sulfate)之氯化鈉水溶液探討溶液離子強度對吸附行為的影響。當溶液的離子強度增強,因為吸附速率的增加,也使得吸附層的結構及流變性質產生很大的改變。當溶液接近電中性時,表面流變性質主要會受到存在於吸附層的微聚集體所影響;故我們以三種不同的溶液型態,藉由壓縮及擴張氣-液界面,以所得之表面張力進行探討。實驗結果發現,均勻溶液所得之表面張力為正弦震盪,其餘兩溶液之結果則偏離了正弦震盪,並可以總諧波失真參數(total harmonic distortion parameter)來表示。
本研究依據合成聚電解質及界劑溶液所得之理論及實驗結果後,進而探討較為複雜的天然聚電解質及界劑溶液之系統;由於DNA為具有特殊之雙螺旋結構的去氧核醣核酸,故為本研究天然聚電解質的最佳選擇,且DNA及界劑溶液系統之研究也將為本論文的核心。
首先,本研究必須先了解線性之小牛胸腺DNA與十六烷基三甲基溴化胺於溶液表面之相互作用,並藉由改變不同之DNA或界劑濃度,探討其吸附動力學。實驗結果顯示,當DNA濃度較低時,由動態表面張力曲線可發現有相轉換的現象,即在某張力值有一兩相共存區,並藉由其他量測方法可知,形成吸附層之機制大約可分為四個階段。
由線性DNA及不同鏈長之界劑的實驗結果分析發現,DNA及界劑分子之複合體的形成不只是因為兩分子間的靜電吸引力,也包含了界劑疏水基及DNA鹼基對間的相互作用力。
最後,為了解DNA結構與DNA/界劑吸附層之流變性質的關係,本研究以線性及質體DNA之溶液進行探討。DNA分子的大小、結構及有效電荷會促使其生成不同表面活性的DNA/界劑複合體,並對吸附層的流變性質產生很大的改變。


This dissertation focusses on two general systems of interest – adsorption films formed by synthetic and natural polyelectrolytes with oppositely charged single chained surfactants at the liquid/gas interface. The surface properties of these polyelectrolyte/surfactant adsorption films were studied by several experimental techniques in order to investigate the mechanism of adsorption layer formation, its rheological properties, and morphology depending on various system parameters, such as surfactant hydrophobicity, solution ionic strength, bulk and surface composition, nature and molecular structure of polyelectrolyte.
First, the influence of surfactant hydrophobicity on the adsorption kinetics and rheological properties of mixed solutions of polyacrylic acid and alkyltrimethylammonium bromides was examined. It was found that the dynamic surface elasticity exhibited non-monotonic behaviour for all the investigated solutions and displayed two local maxima at surfactant concentrations close to the critical micelle concentration. The first maximum was connected with the aggregate formation in the surface layer while the second maximum occurred simultaneously with a multilayer formation at the gas-liquid interface. The increase of the surfactant hydrocarbon chain length caused the formation of a more rigid adsorption layer, characterized by a higher surface elasticity.
The slow adsorption kinetics, typically observed for oppositely charged polyelectrolyte/surfactant systems due to the electrostatic adsorption barrier, urged us to investigate the impact of the solution ionic strength using as an example solutions of poly(diallyldimethylammonium chloride) with sodium dodecyl sulfate in presence of sodium chloride. The increase of the solution ionic strength resulted in strong changes of the surface dilatational rheological properties and, thereby, of the interfacial layer structure due to the large increase of the adsorption rate. Close to the charge neutralization point, however, the surface rheological properties were mainly influenced by the presence of micro-aggregates embedded in the adsorption layer. In this case, the effects of changing of the sample history on the rheological behavior and heterogeneity of the interface were further investigated. The appearance of non-linear effects and deviation from pure sinusoidal oscillations of the surface tension was quantitatively characterized by the total harmonic distortion parameter.
Relying on the body of theoretical and experimental results regarding to a relatively simple model system of synthetic polyelectrolyte/surfactant solutions, the further study was devoted to a more complex system, containing a natural polyelectrolyte of special importance. Due to its specific double-helix structure deoxyribonucleic acid proved to be an excellent candidate for our purpose. The results obtained for DNA/surfactant solutions are discussed in details and form a core of this thesis.
First, the main attention was paid to the interaction of linear calf thymus DNA with oppositely charged cethyltrimetylammonium bromide at the solution surface. Measurements of the kinetic dependencies of the surface properties as a function of DNA and surfactant concentration gave a possibility to discover the time intervals corresponding to coexistence of two-dimensional phases in the surface layer, which has not been detected previously for polyelectrolyte/surfactant solutions. The multi-technique approach together with the calculations of the adsorption kinetics allowed elucidation of the nature of coexisting surface phases and distinguishing four main steps of the adsorption layer formation mechanism.
Afterward, the results obtained for linear DNA and surfactants with different chain lengths were analyzed, providing a strong support to the idea that the formation of the DNA/surfactant complexes is caused by not only electrostatic attractions but also hydrophobic interactions between hydrophobic surfactant tail and nucleobases of DNA exposed in the major groove of the double helix.
Finally, in order to investigate the correlation between the DNA molecular structure and the rheological behavior of DNA/surfactant adsorption layers, measurements of the dynamic surface properties of the solutions containing linear and plasmid DNA were carried out. The significant difference in the size of macromolecules, their conformation, and thereby their effective charge led to the formation of DNA/surfactant complexes of different surface activity and caused drastic changes in the rheology of the adsorption layer.

摘要………………………………………………………………………………………...i Abstract ………...………………………………………………………………………ii Acknowledgements………………………………………………………………...iv Table of Contents…………………………………………………………………...v Notations………………………………………………………………………………...vii Abbreviations………………………………………………………………………….x List of figures………………………………………………………………………….xi List of tables……………………………………………………………………………xv Motivation……………………………………………………………………………….1 Chapter 1 – Introduction………………………………………………………….4 1.1 Surfactants………………………………………………………………………..4 1.2 Polyelectrolytes…………………………………………………………………4 1.3 DNA…………………………………………………………………………….......5 1.3.1 Plasmid DNA……………………………………………………………7 Chapter 2 – Rheology……………………………………………………………..8 2.1 Introduction……………………………………………………………….8 2.2 Surface rheology: historical overview……………………….8 2.3 Theory of dilatational surface elasticity……………………9 2.4 Dilatational surface elasticity of polyelectrolyte/surfactant solutions………….15 Chapter 3 – Experimental Section…………………………………………………….20 3.1 Surface tensiometry…………………………………………………………….20 3.2 Dilatational surface rheology……………………………………………….21 3.3 Ellipsometry…………………………………………………………………....….24 3.4 Atomic force microscopy…………………………………………………….26 3.5 Brewster angle microscopy………………………………………………….27 3.6 Infrared absorption-reflection spectroscopy……………………….29 3.7 Dynamic light scattering………………………………………………………29 3.8 Materials………………………………………………………………………........30 Chapter 4 – Adsorption films of surfactants with synthetic polyelectrolytes………………32 4.1 Impact of surfactant chain length…………………………………………32 4.1.1 Experimental routine…………………………………………………..33 4.1.2 PAA/CnTAB adsorption films………………………………………33 4.2 Impact of the solution ionic strength……………………………………45 4.2.1 Experimental routine………………………………………………….47 4.2.2 Calculation of the Total Harmonic Distortion Coefficient…………...48 4.2.3 PDADMAC/SDS adsorption films…………………………………...............48 4.2.4 Non-linear effects in PDADMAC/SDS adsorption films……………...57 4.2.5 Influence of aggregation in the bulk (the sample history) ………….58 Chapter 5 – Adsorption films of surfactants with DNA……………………………………....60 5.1 Complexes of DNA with surfactant at air/liquid interface……………………...60 5.2 Experimental routine………………………………………………………........61 5.3 DNA/surfactant adsorption films: effect of surfactant hydrophobicity…....61 5.4 DNA/surfactant adsorption films: effect of DNA concentration……………….64 5.5 Morphology of DNA/surfactant adsorption layers……………………………........68 5.6 Phase transition in DNA/surfactant adsorption layers………………………….....70 5.7 DNA/surfactant adsorption films: impact of DNA structure……………….......79 Chapter 6 – Conclusions and future work…………………………………………...84 6.1 Conclusions……………………………………………………………………........84 6.2 Future work……………………………………………………………………........86 References………………………………………………………………………………….........88 Appendix…………………………………………………………………………………….........102

(1) Goddard, E. D. Polymer/Surfactant Interaction: Interfacial Aspects. J. Colloid Interface Sci. 2002, 256, 228–235.
(2) Langevin, D.; Monroy, F. Interfacial Rheology of Polyelectrolytes and Polymer Monolayers at the Air-Water Interface. Curr. Opin. Colloid Interface Sci. 2010, 15 (4), 283–293.
(3) Langevin, D. Polyelectrolyte and Surfactant Mixed Solutions. Behavior at Surfaces and in Thin Films. Adv. Colloid Interface Sci. 2001, 89-90, 467–484.
(4) Goddard, E. D. Polymer/surfactant Interaction-Its Relevance to Detergent Systems. J. Am. Oil Chem. Soc. 1994, 71 (1), 1–16.
(5) Penfold, J.; Thomas, R. K.; Taylor, D. J. F. Polyelectrolyte/surfactant Mixtures at the Air-Solution Interface. Curr. Opin. Colloid Interface Sci. 2006, 11 (6), 337–344.
(6) Piculell, L.; Norrman, J.; Svensson, A. V.; Lynch, I.; Bernardes, J. S.; Loh, W. Ionic Surfactants with Polymeric Counterions. Adv. Colloid Interface Sci. 2009, 147-148, 228–236.
(7) Miller, R.; Liggieri, L. Interfacial Rheology; CRC Press, 2009.
(8) Taylor, D. J. F.; Thomas, R. K.; Penfold, J. Polymer/surfactant Interactions at the Air/water Interface. Adv. Colloid Interface Sci. 2007, 132 (2), 69–110.
(9) Kogej, K. Association and Structure Formation in Oppositely Charged Polyelectrolyte-Surfactant Mixtures. Adv. Colloid Interface Sci. 2010, 158 (1-2), 68–83.
(10) Holmberg, K.; Jonsson, B.; Kronberg, B.; Lindman, B. Surfactants And Polymers In Aqueous Solutions, Second Edi.; Wiley: New York, 2002.
(11) Noskov, B. A. Dynamic Surface Elasticity of Polymer Solutions. Colloid Polym. Sci. 1995, 273 (3), 263–270.
(12) Cooke, D. J.; Blondel, J. a. K.; Lu, J.; Thomas, R. K.; Wang, Y.; Han, B.; Yan, H.; Penfold, J. Interaction between Poly(ethylene Oxide) and Monovalent Dodecyl Sulfates Studied by Neutron Reflection. Langmuir 1998, 14 (8), 1990–1995.
(13) Lee, L. T.; Mann, E. K.; Guiselin, O.; Langevin, D.; Farnoux, B.; Penfold, J. Polymer-Surfactant Films at the Air-Water Interface. 2. A Neutron Reflectivity Study. Macromolecules 1993, 26 (25), 7046–7052.
(14) Lyttle, D. J.; Lu, J. R.; Su, T. J.; Thomas, R. K.; Penfold, J. Structure of a Dodecyltrimethylammonium Bromide Layer at the Air/Water Interface Determined by Neutron Reflection: Comparison of the Monolayer Structure of Cationic Surfactants with Different Chain Lengths. Langmuir 1995, 11 (3), 1001–1008.

(15) Taylor, D. J. F.; Thomas, R. K.; Penfold, J. Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures. Neutron Reflection from Alkyl Trimethylammonium Bromide and Sodium Poly ( Styrenesulfonate ) at the Air / Water Interface: The Effect of Surfactant Chain Length. Langmuir 2003, 19 (12), 3712–3719.
(16) Zhang, J.; Taylor, D. J. F.; Li, P. X.; Thomas, R. K.; Wang, J. B.; Penfold, J. B. Adsorption of DNA and Dodecyl Trimethylammonium Bromide Mixtures at the Air/water Interface: A Neutron Reflectometry Study. Langmuir 2008, 24 (5), 1863–1872.
(17) Jain, N. J.; Albouy, P. A.; Langevin, D. Study of Adsorbed Monolayers of a Cationic Surfactant and an Anionic Polyelectrolyte at the Air-Water Interface. Role of the Polymer Charge Density. Langmuir 2003, 19 (20), 8371–8379.
(18) Mann, E. K.; Lee, L. T.; Henon, S.; Langevin, D.; Meunier, J. Polymer-Surfactant Films at the Air-Water Interface. 1. Surface Pressure, Ellipsometry, and Microscopic Studies. Macromolecules 1993, 26 (25), 7037–7045.
(19) Monteux, C.; Llauro, M.-F.; Baigl, D.; Williams, C. E.; Anthony, O.; Bergeron, V. Interfacial Microgels Formed by Oppositely Charged Polyelectrolytes and Surfactants. 1. Influence of Polyelectrolyte Molecular Weight. Langmuir 2004, 20 (13), 5358–5366.
(20) Jain, N. J.; Albouy, P.-A.; Langevin, D. Study of Adsorbed Monolayers of a Cationic Surfactant and an Anionic Polyelectrolyte at the Air−Water Interface. Langmuir 2003, 19 (14), 5680–5690.
(21) Klebanau, A.; Kliabanova, N.; Ortega, F.; Monroy, F.; Rubio, R. G.; Starov, V. Equilibrium Behavior and Dilational Rheology of Polyelectrolyte/insoluble Surfactant Adsorption Films: Didodecyldimethylammonium Bromide and Sodium Poly(styrenesulfonate). J. Phys. Chem. B 2005, 109 (39), 18316–18323.
(22) Akentiev, A. V.; Bilibin, A. Y.; Zorin, I. M.; Lin, S.-Y.; Loglio, G.; Miller, R.; Noskov, B. A. Scanning Probe Microscopy of Adsorption Layers of Sodium Polystyrenesulfonate/dodecyltrimethylammonium Bromide Complexes. Colloid J. 2011, 73 (4), 437–444.
(23) Taylor, D.; Thomas, R.; Penfold, J. The Adsorption of Oppositely Charged Polyelectrolyte / Surfactant Mixtures : Neutron Reflection from Dodecyl Trimethylammonium Bromide and Sodium Poly ( Styrene Sulfonate ) at the Air / Water Interface. Langmuir 2002, 18 (20), 4748–4757.
(24) Noskov, B. A.; Loglio, G.; Miller, R. Dilational Viscoelasticity of Polyelectolyte/surfactant Adsorption Films at the Air/water Interface: Dodecyltrimethylammonium Bromide and Sodium Poly (Styrenesulfonate). J. Phys. Chem. B 2004, 108 (48), 18615–18622.

(25) Monteux, C.; Fuller, G. G.; Bergeron, V. Shear and Dilational Surface Rheology of Oppositely Charged Polyelectrolyte/surfactant Microgels Adsorbed at the Air-Water Interface. Influence on Foam Stability. J. Phys. Chem. B 2004, 108 (42), 16473–16482.
(26) Noskov, B. A.; Lin, S.; Loglio, G.; Rubio, R. G.; Miller, R.; Lastruccia, V.; Fiorentino, S. Dilational Viscoelasticity of PEO - PPO - PEO Triblock Copolymer Films at the Air - Water Interface in the Range of High Surface Pressures. Langmuir 2006, No. 12, 2647–2652.
(27) Noskov, B. A. Dilational Surface Rheology of Polymer and Polymer/surfactant Solutions. Curr. Opin. Colloid Interface Sci. 2010, 15 (4), 229–236.
(28) Dan, A.; Gochev, G.; Kragel, J.; Aksenenko, E. V.; Fainerman, V. B.; Miller, R. Interfacial Rheology of Mixed Layers of Food Proteins and Surfactants. Curr. Opin. Colloid Interface Sci. 2013, 18 (4), 302–310.
(29) Noskov, B. A. Protein Conformational Transitions at the Liquid-Gas Interface as Studied by Dilational Surface Rheology. Adv. Colloid Interface Sci. 2014, 206, 222–238.
(30) Maldonado-Valderrama, J.; Patino, J. M. R. Interfacial Rheology of Protein-Surfactant Mixtures. Curr. Opin. Colloid Interface Sci. 2010, 15 (4), 271–282.
(31) Bykov, A. G.; Noskov, B. A.; Loglio, G.; Lyadinskaya, V. V.; Miller, R. Dilational Surface Elasticity of Spread Monolayers of Polystyrene Microparticles. Soft Matter 2014, 10 (34), 6499.
(32) Rohland, N.; Hofreiter, M. Comparison and Optimization of Ancient DNA Extraction. Biotechniques 2007, 42 (3), 343–352.
(33) McLoughlin, D. M.; O’Brien, J.; McManus, J. J.; Gorelov, A. V.; Dawson, K. A. A Simple and Effective Separation and Purification Procedure for DNA Fragments Using Dodecyltrimethylammonium Bromide. Bioseparation 2001, 9 (5), 307–313.
(34) Moran, M. C.; Alonso, T.; Lima, F. S.; Vinardell, M. P.; Miguel, M. G.; Lindman, B. Counter-Ion Effect on surfactant–DNA Gel Particles as Controlled DNA Delivery Systems. Soft Matter 2012, 8 (11), 3200–3211.
(35) Zuidam, N. J.; Barenholz, Y. Electrostatic and Structural Properties of Complexes Involving Plasmid DNA and Cationic Lipids Commonly Used for Gene Delivery. Biochim. Biophys. Acta - Biomembr. 1998, 1368 (1), 115–128.
(36) Carlstedt, J.; Lundberg, D.; Dias, R. S.; Lindman, B. Condensation and Decondensation of DNA by Cationic Surfactant, Spermine, or Cationic Surfactant-Cyclodextrin Mixtures: Macroscopic Phase Behavior, Aggregate Properties, and Dissolution Mechanisms. Langmuir 2012, 28 (21), 7976–7989.

(37) Costa, D.; Briscoe, W. H.; Queiroz, J. Polyethylenimine Coated Plasmid DNA-Surfactant Complexes as Potential Gene Delivery Systems. Colloids Surf. B. Biointerfaces 2015, 133, 156–163.
(38) Cardenas, M.; Campos-Teran, J.; Nylander, T.; Lindman, B. DNA and Cationic Surfactant Complexes at Hydrophilic Surfaces. An Ellipsometry and Surface Force Study. Langmuir 2004, 20, 8597–8603.
(39) Eskilsson, K.; Leal, C.; Lindman, B.; Miguel, M.; Nylander, T. DNA-Surfactant Complexes at Solid Surfaces. Langmuir 2001, 17 (5), 1666–1669.
(40) Chen, Q.; Kang, X.; Li, R.; Du, X.; Shang, Y.; Liu, H.; Hu, Y. Structure of the Complex Monolayer of Gemini Surfactant and DNA at the Air/water Interface. Langmuir 2012, 28 (7), 3429–3438.
(41) Sun, L.; Xu, M.; Hou, X.; Wu, L. In-Situ Observation of the Aggregated Morphology and Interaction of Dialkyldimethylammonium Bromide with DNA at Air/water Interface by Brewster Angle Microscopy. Mater. Lett. 2004, 58 (9), 1466–1470.
(42) Lopes-Costa, T.; Gamez, F.; Lago, S.; Pedrosa, J. M. Adsorption of DNA to Octadecylamine Monolayers at the Air-Water Interface. J. Colloid Interface Sci. 2011, 354 (2), 733–738.
(43) McLoughlin, D.; Langevin, D. Surface Complexation of DNA with a Cationic Surfactant. In Colloids and Surfaces A: Physicochemical and Engineering Aspects; 2004; Vol. 250, pp 79–87.
(44) Abraham, A.; Campbell, R. A.; Varga, I. New Method to Predict the Surface Tension of Complex Synthetic and Biological Polyelectrolyte/Surfactant Mixtures. Langmuir 2013, 29 (37), 11554–11559.
(45) Schramm, L. L.; Stasiuk, E. N.; Marangoni, D. G. 2 Surfactants and Their Applications. Annu. Rep. Prog. Chem., Sect. C Phys. Chem. 2003, 99, 3–48.
(46) Myers, D. Surface Activity and Surfactant Structures. In Surfaces, Interfaces, and Colloids; John Wiley & Sons, Inc.: New York, USA, 2002; Vol. 4, pp 21–39.
(47) Myers, D. An Overview of Surfactant Science and Technology. In Surfactant Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp 1–28.
(48) Dobrynin, A. V.; Rubinstein, M. Theory of Polyelectrolytes in Solutions and at Surfaces. Prog. Polym. Sci. 2005, 30 (11), 1049–1118.
(49) Dias, R.; Lindman, B. DNA INTERACTIONS WITH POLYMERS AND SURFACTANTS; Wiley, 2008.
(50) Steffe, J. F.; Ph, D.; Press, F. Rheological Methods in; 1994; Vol. 23.

(51) Langevin, D. Surface Shear Rheology of Monolayers at the Surface of Water. Adv. Colloid Interface Sci. 2014, 207 (1), 121–130.
(52) Pelipenko, J.; Kristl, J.; Rošic, R.; Baumgartner, S.; Kocbek, P. Interfacial Rheology: An Overview of Measuring Techniques and Its Role in Dispersions and Electrospinning. Acta Pharm. 2012, 62 (2), 123–140.
(53) Kragel, J.; Derkatch, S. R. Interfacial Shear Rheology. Curr. Opin. Colloid Interface Sci. 2010, 15 (4), 246–255.
(54) Derkach, S. R.; Kragel, J.; Miller, R. Methods of Measuring Rheological Properties of Interfacial Layers (Experimental Methods of 2D Rheology). Colloid J. 2009, 71 (1), 1–17.
(55) Miller, R.; Wustneck, R.; Kragel, J.; Kretzschmar, G. Dilational and Shear Rheology of Adsorption Layers at Liquid Interfaces. Colloids Surfaces A Physicochem. Eng. Asp. 1996, 111 (1-2), 75–118.
(56) Ivanov, I. B.; Danov, K. D.; Ananthapadmanabhan, K. P.; Lips, A. Interfacial Rheology of Adsorbed Layers with Surface Reaction: On the Origin of the Dilatational Surface Viscosity. Adv. Colloid Interface Sci. 2005, 114-115, 61–92.
(57) Langevin, D. Rheology of Adsorbed Surfactant Monolayers at Fluid Surfaces. Annu. Rev. Fluids Mech. 2014, 46, 47–65.
(58) Ochowiak, M.; Broniarz-Press, L.; Rozanski, J. Rheology and Structure of Emulsions and Suspensions. J. Dispers. Sci. Technol. 2012, 33 (2), 177–184.
(59) Weaire, D. The Rheology of Foam. Curr. Opin. Colloid Interface Sci. 2008, 13 (3), 171–176.
(60) Langevin, D. Influence of Interfacial Rheology on Foam and Emulsion Properties. Adv. Colloid Interface Sci. 2000, 88 (1-2), 209–222.
(61) Fuller, G. G. Rheology of Mobile Interfaces. Rheol. Rev. 2003, 2003, 77–123.
(62) Fischer, P.; Pollard, M.; Erni, P.; Marti, I.; Padar, S. Rheological Approaches to Food Systems. Comptes Rendus Phys. 2009, 10 (8), 740–750.
(63) Borwankar, R. P.; Case, S. E. Rheology of Emulsions, Foams and Gels. Curr. Opin. Colloid Interface Sci. 1997, 2 (6), 584–589.
(64) Mondy, L.; Brooks, C.; Grillet, A.; Moffat, H.; Koehler, T.; Yaklin, M.; Reichert, M.; Walker, L.; Cote, R.; Castaneda, J. Surface Rheology and Interface Stability. Sandia Rep. 2010, No. November.
(65) Khan, S. a; Royer, J. R.; Raghavan, S. R. Rheology: Tools and Methods. Aviation Fuels with Improved Fire Safety A Proceedings. 1997, pp 31–46.

(66) Vandewalle, N.; Caps, H.; Delon, G.; Saint-Jalmes, a; Rio, E.; Saulnier, L.; Adler, M.; Biance, a L.; Pitois, O.; Addad, S. C.; et al. Foam Stability in Microgravity. J. Phys. Conf. Ser. 2011, 327, 012024.
(67) Fischer, P.; Windhab, E. J. Rheology of Food Materials. Curr. Opin. Colloid Interface Sci. 2011, 16 (1), 36–40.
(68) Gibbs, J. W. On the Equilibrium of Heterogeneous Substances. Trans. Connect. Acad. 1876, 3, 108–248/343–524.
(69) Nikas, Y.; Blankschtein, D. Complexation of Nonionic Polymers and Surfactants in Dilute Aqueous Solutions. Langmuir 1994, 10 (15), 3512–3528.
(70) Rossetti, D.; Ravera, F.; Liggieri, L. Effect of Tea Polyphenols on the Dilational Rheology of Human Whole Saliva (HWS): Part 1, HWS Characterization. Colloids Surfaces B Biointerfaces 2013, 110, 466–473.
(71) Mikhailovskaya, A. A.; Noskov, B. A.; Lin, S. Y.; Loglio, G.; Miller, R. Formation of Protein/surfactant Adsorption Layer at the Air/water Interface as Studied by Dilational Surface Rheology. J. Phys. Chem. B 2011, 115 (33), 9971–9979.
(72) Milyaeva, O. Y.; Noskov, B. A.; Akentiev, A. V.; Lin, S.-Y. Dynamic Surface Elasticity of the Mixed Solutions of Bovine Serum Albumin and Synthetic Polyelectrolytes. Mendeleev Commun. 2014, 24 (5), 264–265.
(73) Campbell, R. A.; Yanez Arteta, M.; Angus-Smyth, A.; Nylander, T.; Varga, I. Multilayers at Interfaces of an Oppositely Charged Polyelectrolyte/ Surfactant System Resulting from the Transport of Bulk Aggregates under Gravity. J. Phys. Chem. B 2012, 116 (27), 7981–7990.
(74) Bykov, A. G.; Lin, S. Y.; Loglio, G.; Lyadinskaya, V. V.; Miller, R.; Noskov, B. A. Impact of Surfactant Chain Length on Dynamic Surface Properties of Alkyltrimethylammonium Bromide/polyacrylic Acid Solutions. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 354 (1-3), 382–389.
(75) Loglio, G.; Pandolfini, P.; Miller, R.; Makievski, A. V.; Kragel, J.; Ravera, F.; Noskov, B. A. Perturbation–response Relationship in Liquid Interfacial Systems: Non-Linearity Assessment by Frequency–domain Analysis. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 261 (1-3), 57–63.
(76) Buzza, D. M. A.; Jones, J. L.; McLeish, T. C. B.; Richards, R. W. Theory of Surface Light Scattering from a Fluid-Fluid Interface with Adsorbed Polymeric Surfactants. J. Phys. Chem. 1998, 109, 5008–5024.
(77) Krotov, V. V. Physical Basis of the Surface Rheology; Leningrad, 1979; pp 75–116.

(78) Noskov, B. A. Dynamic Surface Properties of Surfactants Solutions. Acad. Sci. USSR 1989, 5, 105–114.
(79) Langmuir, I. Two-Dimensional Gases Liguids and Solids. Science (80-. ). 1936, 84, 379–383.
(80) van Voorst Vader, F.; Erkens, T. F.; van den Tempel, M. Measurement of Dilatational Surface Properties. Trans. Faraday Soc. 1964, 60, 1170–1177.
(81) Joly, M. Rheological Properties of Monomolecular Films, Part I. Basic Concepts and Experimental Methods. In Surface Colloid Science; New York, USA, 1972.
(82) Izmaylova, V. N.; Yampolskay, G. P.; Bobrova, L. E.; Tulovskay, G. D. Surface Phenomena and Surfactants; Leningrad, 1984.
(83) Barentin, C.; Muller, P.; Ybert, C.; Joony, J.-F.; di Meglio, J.-M. Shear Viscosity of Polymer and Surfactant Monolayers. Eur. Phys. J. E 2000, 2, 153–163.
(84) Luap, C.; Goedel, W. A. Linear Viscoelastic Behavior of End-Tethered Polymer Monolayers at the Air/water Interface. Macromolecules 2001, No. 34, 1343–1351.
(85) Noskov, B. A. Dynamic Surface Elasticity of Surfactants. Colloid J. 1982, 3, 492–498.
(86) Noskov, B. A.; Loglio, G. Dynamic Surface Elasticity of Surfactant Solutions. Colloids Surfaces A Physicochem. Eng. Asp. 1998, 143 (2-3), 167–183.
(87) Eigen, M.; de Meier, L. Investigation Methods of Fast Reactions; Mir: Moscow, 1977.
(88) Noskov, B. A.; Akentiev, A. V.; Alexandrov, D. A.; Loglio, G.; Miller, R. Food Colloids. Fundamentals of Formulation. In 2001; Miller, R., Dickinson, E., Eds.; Royal Society of Chemistry: Cambridge; p 191.
(89) Sasaki, M.; Yasunaga, T.; Satake, N.; Ashida, M. Kinetic Studies on Double Relaxation of Surfactant Solutions Using a Capillary Wave Method. Bull. Chem. Soc. Japan. 1977, 50, 3144–3148.
(90) Noskov, B. A.; Grigoriev, D. O. Adsorption from Micellar Solutions. In Surfactants: Chemistry, Interfacial Properties, Applications; Miller, R., Moebius, D., Eds.; Elsevier: Amsterdam, 2001; pp 401–509.
(91) Noskov, B. A. Kinetics of Adsorption from Micellar Solutions. Adv. Colloid Interface Sci. 2002, 95 (2-3), 237–293.
(92) Kretzschmar, G.; Miller, R. Dynamic Properties of Adsorption Layers of Amphiphilic Substances at Fluid Interfaces. Adv. Colloid Interface Sci. 1991, 36, 65–124.
(93) Noskov, B. A. Fast Adsorption at the Liquid-Gas Interface. Adv. Colloid Interface Sci. 1996, 69 (1-3), 63–129.

(94) Richards, R. W.; Taylor, M. R. Long-Wavelength Dynamics of Spread Films of Poly(methyl Methacrylate) and Poly(ethylene Oxide) at the Air/water Interface. J. Chem. Soc. Faraday Trans. 1996, 92, 601–610.
(95) Kokelaar, J. J.; Prins, A.; De Gee, M. A New Meilational Modulus of a Liquid. J. Colloid Interface Sci. 1991, 146 (2), 507–511.
(96) Campbell, R. A.; Yanez Arteta, M.; Angus-Smyth, A.; Nylander, T.; Noskov, B. A.; Varga, I. Direct Impact of Nonequilibrium Aggregates on the Structure and Morphology of pdadmac/SDS Layers at the Air/water Interface. Langmuir 2014, 30 (29), 8664–8674.
(97) De Feijter, J.; Benjamins, J.; Veer, F. Ellipsometry as a Tool to Study the Adsorption Behavior of Syntetic and Biopolyers at the Air Water Interface. Biopolymers 1978, 17 (7), 1759–1772.
(98) Cappella, B.; Dietler, G. Force-Distance Curves by Atomic Force Microscopy. Surf. Sci. Rep. 1999, 34 (1-3), 1–104.
(99) Mendelsohn, R.; Mao, G.; Flach, C. R. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films. Biochim. Biophys. Acta - Biomembr. 2010, 1798 (4), 788–800.
(100) Pecora, R. Dynamic Light Scattering; Plenum Press: New York, 1985.
(101) Gallagher, S. R. Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy. In Current Protocols in Molecular Biology; 2011; p A.3D.1 – A.3D.14.
(102) Noskov, B. A.; Grigoriev, D. O.; Lin, S.-Y.; Loglio, G.; Miller, R. Dynamic Surface Properties of Polyelectrolyte/Surfactant Adsorption Films at the Air/Water Interface: Poly(diallyldimethylammonium Chloride) and Sodium Dodecylsulfate. Langmuir 2007, 23 (19), 9641–9651.
(103) Noskov, B. A.; Bykov, A. G.; Grigoriev, D. O.; Lin, S. Y.; Loglio, G.; Miller, R. Dilational Visco-Elasticity of Polyelectrolyte/surfactant Adsorption Layers at the Air/water Interface: Poly(vinyl Pyridinium Chloride) and Sodium Dodecylsulfate. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 322 (1-3), 71–78.
(104) Bykov, A. G.; Lin, S. Y.; Loglio, Mg.; Miller, R.; Noskov, B. A. Kinetics of Adsorption Layer Formation in Solutions of Polyacid/surfactant Complexes. J. Phys. Chem. C 2009, 113 (14), 5664–5671.
(105) Jain, N.; Trabelsi, S.; Guillot, S.; McLoughlin, D.; Langevin, D.; Letellier, P.; Turmine, M. Critical Aggregation Concentration in Mixed Solutions of Anionic Polyelectrolytes and Cationic Surfactants. Langmuir 2004, 20 (20), 8496–8503.

(106) Penfold, J.; Tucker, I.; Thomas, R. K.; Taylor, D. J. F.; Zhang, X. L.; Bell, C.; Breward, C.; Howell, P. The Interaction between Sodium Alkyl Sulfate Surfactants and the Oppositely Charged Polyelectrolyte, polyDMDAAC, at the Air-Water Interface: The Role of Alkyl Chain Length and Electrolyte and Comparison with Theoretical Predictions. Langmuir 2007, 23 (6), 3128–3136.
(107) Monteux, C.; Williams, C. E.; Bergeron, V. Interfacial Microgels Formed by Oppositely Charged Polyelectrolytes and Surfactants. Part 2. Influence of Surfactant Chain Length and Surfactant/Polymer Ratio. Langmuir 2004, 20 (13), 5367–5374.
(108) Bergeron, V. Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam Films. Langmuir 1997, 13 (13), 3474–3482.
(109) Stubenrauch, C.; Fainerman, V. B.; Aksenenko, E. V.; Miller, R. Adsorption Behavior and Dilational Rheology of the Cationic Alkyl Trimethylammonium Bromides at the Water/air Interface. J. Phys. Chem. B 2005, 109 (4), 1505–1509.
(110) Langevin, D. Complexation of Oppositely Charged Polyelectrolytes and Surfactants in Aqueous Solutions. A Review. Adv. Colloid Interface Sci. 2009, 147-148, 170–177.
(111) Staples, E.; Tucker, I.; Penfold, J.; Warren, N.; Thomas, R. K.; Taylor, D. J. F. Organization of Polymer - Surfactant Mixtures at the Air - Water Interface : Sodium Dodecyl Sulfate and Poly ( Dimethyldiallylammonium Chloride ). Langmuir 2002, 18 (3), 5147–5153.
(112) Zhang, J.; Thomas, R.; Penfold, J. Interaction of Oppositely Charged Polyelectrolyte–ionic Surfactant Mixtures: Adsorption of Sodium Poly(acrylic Acid)–dodecyl Trimethyl Ammonium Bromide Mixtures at the Air–water Interface. Soft Matter 2005, 1 (4), 310.
(113) Cohen-Stuart, M. A.; Hoogendam, C. W.; De Keizer, A. Kinetics of Polyelectrolyte Adsorption. J. Phys. Condens. Matter 1997, 9 (37), 7767–7783.
(114) Noskov, B. A.; Nuzhnov, S. N.; Loglio, G.; Miller, R. Dynamic Surface Properties of Sodium Poly(styrenesulfonate) Solutions. Macromolecules 2004, 37 (7), 2519–2526.
(115) Trabelsi, S.; Langevin, D. Co-Adsorption of Carboxymethyl-Cellulose and Cationic Surfactants at the Air−Water Interface. Langmuir 2007, 23 (3), 1248–1252.
(116) Mackie, A. R.; Gunning, a P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J. Orogenic Displacement in Mixed -Lactoglobulin / -Casein Films at the Air / Water Interface. Langmuir 2001, 17 (13), 6593–6598.
(117) Gunning, P. A.; Mackie, A. R.; Gunning, A. P.; Wilde, P. J.; Woodward, N. C.; Morris, V. J. The Effect of Surfactant Type on Protein Displacement from the Air–water Interface. Food Hydrocoll. 2004, 18 (3), 509–515.

(118) Bain, C. D.; Claesson, P. M.; Langevin, D.; Meszaros, R.; Nylander, T.; Stubenrauch, C.; Titmuss, S.; von Klitzing, R. Complexes of Surfactants with Oppositely Charged Polymers at Surfaces and in Bulk. Adv. Colloid Interface Sci. 2010, 155 (1-2), 32–49.
(119) Pojjaźk, K.; Bertalanits, E.; Meźszaźros, R. Effect of Salt on the Equilibrium and Nonequilibrium Features of Polyelectrolyte/surfactant Association. Langmuir 2011, 27 (15), 9139–9147.
(120) Mezei, A.; Meszaros, R.; Varga, I.; Gilanyi, T. Effect of Mixing on the Formation of Complexes of Hyperbranched Cationic Polyelectrolytes and Anionic Surfactants. Langmuir 2007, 23 (8), 4237–4247.
(121) Meszaros, R.; Thompson, L.; Bos, M.; Varga, I.; Gilanyi, T. Interaction of Sodium Dodecyl Sulfate with Polyethyleneimine: Surfactant-Induced Polymer Solution Colloid Dispersion Transition. Langmuir 2003, 19 (3), 609–615.
(122) Campbell, R. A.; Angus-Smyth, A.; Yanez Arteta, M.; Tonigold, K.; Nylander, T.; Varga, I. New Perspective on the Cliff Edge Peak in the Surface Tension of Oppositely Charged Polyelectrolyte/surfactant Mixtures. J. Phys. Chem. Lett. 2010, 1 (20), 3021–3026.
(123) Campbell, R. A.; Yanez Arteta, M.; Angus-Smyth, A.; Nylander, T.; Varga, I. Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium Chloride)/sodium Dodecyl Sulfate at the Air-Water Interface Studied by Neutron Reflectometry. J. Phys. Chem. B 2011, 115 (51), 15202–15213.
(124) Tonigold, K.; Varga, I.; Nylander, T.; Campbell, R. A. Effects of Aggregates on Mixed Adsorption Layers of Poly(ethylene Imine) and Sodium Dodecyl Sulfate at the Air/liquid Interface. Langmuir 2009, 25 (7), 4036–4046.
(125) Petkova, R.; Tcholakova, S.; Denkov, N. D. Foaming and Foam Stability for Mixed Polymer-Surfactant Solutions: Effects of Surfactant Type and Polymer Charge. Langmuir 2012, 28 (11), 4996–5009.
(126) Politova, N.; Tcholakova, S.; Golemanov, K.; Denkov, N. D.; Vethamuthu, M.; Ananthapadmanabhan, K. P. Effect of Cationic Polymers on Foam Rheological Properties. Langmuir 2012, 28 (2), 1115–1126.
(127) Petkova, R.; Tcholakova, S.; Denkov, N. D. Role of Polymer-Surfactant Interactions in Foams: Effects of pH and Surfactant Head Group for Cationic Polyvinylamine and Anionic Surfactants. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 438, 174–185.
(128) Campbell, R. A.; Ash, P. A.; Bain, C. D. Dynamics of Adsorption of an Oppositely Charged Polymer-Surfactant Mixture at the Air-Water Interface: Poly(dimethyldiallylammonium Chloride) and Sodium Dodecyl Sulfate. Langmuir 2007, 23 (6), 3242–3253.

(129) Angus-Smyth, A.; Bain, C. D.; Varga, I.; Campbell, R. Effects of Bulk Aggregation on PEI–SDS Monolayers at the Dynamic Air–liquid Interface: Depletion due to Precipitation versus Enrichment by a Convection/spreading Mechanism. Soft Matter 2013, 9 (26), 6103.
(130) Noskov, B. A.; Loglio, G.; Miller, R. Dilational Surface Visco-Elasticity of Polyelectrolyte/surfactant Solutions: Formation of Heterogeneous Adsorption Layers. Adv. Colloid Interface Sci. 2011, 168, 179–197.
(131) Bykov, A. G.; Lin, S. Y.; Loglio, G.; Miller, R.; Noskov, B. A. Dynamic Surface Properties of Polyethylenimine and Sodium Dodecylsulfate Complex Solutions. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 367 (1-3), 129–132.
(132) Diez-Pascual, A. M.; Compostizo, A.; Crespo-Colin, A.; Rubio, R. G.; Miller, R. Adsorption of Water-Soluble Polymers with Surfactant Character. J. Colloid Interface Sci. 2007, 307 (2), 398–404.
(133) Noskov, B. A.; Akentiev, A. V.; Bilibin, A. Y.; Zorin, I. M.; Miller, R. Dilational Surface Viscoelasticity of Polymer Solutions. Adv. Colloid Interface Sci. 2003, 104, 245–271.
(134) Noskov, B. A.; Bilibin, A. Y.; Lezov, A. V.; Loglio, G.; Filippov, S. K.; Zorin, I. M.; Miller, R. Dynamic Surface Elasticity of Polyelectrolyte Solutions. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 298 (1-2), 115–122.
(135) Monteux, C.; Williams, C. E.; Meunier, J.; Anthony, O.; Bergeron, V. Adsorption of Oppositely Charged Polyelectrolyte / Surfactant Complexes at the Air / Water Interface : Formation of Interfacial Gels. Langmuir 2004, 20 (1), 57–63.
(136) Khomutov, G. B. Interfacially Formed Organized Planar Inorganic, Polymeric and Composite Nanostructures. Adv. Colloid Interface Sci. 2004, 111 (1-2), 79–116.
(137) Csaki, A.; Maubach, G.; Born, D.; Reichert, J.; Fritzsche, W. DNA-Based Molecular Nanotechnology. Single Mol. 2002, 3 (5-6), 275–280.
(138) Koltover, I.; Salditt, T.; Radler, J. O.; Safinya, C. R. An Inverted Hexagonal Phase of Cationic Liposome-DNA Complexes Related to DNA Release and Delivery. Science 1998, 281, 78–81.
(139) Tekade, R. K.; Kumar, P. V.; Jain, N. K. Dendrimers in Oncology: An Expanding Horizon. Chem. Rev. 2009, 109, 49–87.
(140) Hayakawa, K.; Santerre, J. P.; Kwak, J. C. T. The Binding of Cationic Surfactants by DNA. Biophys. Chem. 1983, 17, 175–181.
(141) Mel’nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K. Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant. J. Am. Chem. Soc. 1995, 117 (9), 2401–2408.
(142) Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. DNA Phase Behavior in the Presence of Oppositely Charged Surfactants. Langmuir 2000, 16 (24), 9577–9583.
(143) Dias, R. S.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B. Coil-Globule Transition of DNA Molecules Induced by Cationic Surfactants: A Dynamic Light Scattering Study. J. Phys. Chem. B 2005, 109 (20), 10458–10463.
(144) Dasgupta, A.; Das, P. K.; Dias, R. S.; Miguel, M. G.; Lindman, B. Effect of Headgroup on DNA - Cationic Surfactant Interactions. J. Phys. Chem. B 2007, 111 (29), 8502–8508.
(145) Nakanishi, H.; Tsuchiya, K.; Okubo, T.; Sakai, H.; Abe, M. Cationic Surfactant Changes the Morphology of DNA Molecules. Langmuir 2007, 23 (2), 345–347.
(146) Grueso, E.; Cerrillos, C.; Hidalgo, J.; Lopez-Cornejo, P. Compaction and Decompaction of DNA Induced by the Cationic Surfactant CTAB. Langmuir 2012, 28 (30), 10968–10979.
(147) Ramakrishnan, V.; D’costa, M.; Ganesh, K. N.; Sastry, M. PNA-DNA Hybridization at the Air-Water Interface in the Presence of Octadecylamine Langmuir Monolayers. Langmuir 2002, 18 (16), 6307–6311.
(148) Symietz, C.; Schneider, M.; Brezesinski, G.; Mohwald, H. DNA Alignment at Cationic Lipid Monolayers at the Air/water Interface. Macromolecules 2004, 37 (10), 3865–3873.
(149) Gromelski, S.; Brezesinski, G. DNA Condensation and Interaction with Zwitterionic Phospholipids Mediated by Divalent Cations. Langmuir 2006, 22 (14), 6293–6301.
(150) Erokhina, S.; Berzina, T.; Cristofolini, L.; Konovalov, O.; Erokhin, V.; Fontana, M. P. Interaction of DNA Oligomers with Cationic Lipidic Monolayers: Complexation and Splitting. Langmuir 2007, 23 (8), 4414–4420.
(151) Bohinc, K.; Brezesinski, G.; May, S. Modeling the Influence of Adsorbed DNA on the Lateral Pressure and Tilt Transition of a Zwitterionic Lipid Monolayer. Phys. Chem. Chem. Phys. 2012, 14 (30), 10613.
(152) Paiva, D.; Brezesinski, G.; Pereira, M. D. C.; Rocha, S. Langmuir Monolayers of Monocationic Lipid Mixed with Cholesterol or Fluorocholesterol: DNA Adsorption Studies. Langmuir 2013, 29 (6), 1920–1925.
(153) Lee, J.; Chang, C.-H. The Interaction between the Outer Layer of a Mixed Ion Pair Amphiphile/double-Chained Cationic Surfactant Vesicle and DNA: A Langmuir Monolayer Study. Soft Matter 2014, 10 (11), 1831–1839.
(154) Stubenrauch, C.; Albouy, P. A.; Klitzing, R. V.; Langevin, D. Polymer/surfactant Complexes at the Water/air Interface: A Surface Tension and X-Ray Reflectivity Study. Langmuir 2000, 16 (7), 3206–3213.
(155) Kundu, S.; Langevin, D.; Lee, L. T. Neutron Reflectivity Study of the Complexation of DNA with Lipids and Surfactants at the Surface of Water. Langmuir 2008, 24 (21), 12347–12353.

(156) Vongsetskul, T.; Taylor, D. J. F.; Zhang, J.; Li, P. X.; Thomas, R. K.; Penfold, J. Interaction of a Cationic Gemini Surfactant with DNA and with Sodium Poly(styrene Sulphonate) at the Air/water Interface: A Neutron Reflectometry Study. Langmuir 2009, 25 (7), 4027–4035.
(157) Di Profio, P.; Germani, R.; Goracci, L.; Grilli, R.; Savelli, G.; Tiecco, M. Interaction between DNA and Cationic Amphiphiles: A Multi-Technique Study. Langmuir 2010, 26 (11), 7885–7892.
(158) Zakrevskyy, Y.; Kopyshev, A.; Lomadze, N.; Morozova, E.; Lysyakova, L.; Kasyanenko, N.; Santer, S. DNA Compaction by Azobenzene-Containing Surfactant. Phys. Rev. E 2011, 84 (2), 1–9.
(159) Ricci, E.; Sangiorgi, R.; Passerone, A. On the Measurement of the Surface Tension of DNA Solutions. J. Colloid Interface Sci. 1984, 102 (1), 295–297.
(160) Okubo, T.; Kobayashi, K. Surface Tension of Biological Polyelectrolyte Solutions. J. Colloid Interface Sci. 1998, 205 (2), 433–442.
(161) Vollhardt, D.; Fainerman, V. B. Characterisation of Phase Transition in Adsorbed Monolayers at the Air/water Interface. Adv. Colloid Interface Sci. 2010, 154 (1-2), 1–19.
(162) Tsay, R. Y.; Tsai, H. Y.; Wu, T. F.; Lin, S. Y. Adsorption Kinetics of 1-Dodecanol at an Air-Water Interface. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 369 (1-3), 148–153.
(163) Eastoe, J.; Rankin, A.; Wat, R.; Bain, C. D. Surfactant Adsorption Dynamics. Int. Rev. Phys. Chem. 2001, 20 (3), 357–386.
(164) Campbell, R. A.; Parker, S. R. W.; Day, J. P. R.; Bain, C. D. External Reflection FTIR Spectroscopy of the Cationic Surfactant Hexadecyltrimethylammonium Bromide (CTAB) on an Overflowing Cylinder. Langmuir 2004, 20 (20), 8740–8753.
(165) Hossain, M. M.; Yoshida, M.; Kato, T. Higher-Order Structure Formation in Adsorbed Monolayers at Aqueous Solution Surfaces Studied by Brewster Angle Microscopy. Langmuir 2000, 16 (7), 3345–3348.
(166) Ward, A. F. H.; Tordai, L. Time Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time Effects. J. Chem. Phys. 1946, 14 (1946), 453–461.
(167) Harkins, W. D. Physical Chemistry of Surface Films; Reinhold Publishing Corporation: New York, 1952.
(168) Melzer, V.; Vollhardt, D. Formation of Condensed Phase Patterns in Adsorption Layers. Phys. rev. lett. 1996, 76 (20), 3770–3773.
(169) Vollhardt, D. Morphology and Phase Behavior of Monolayers. Adv. Colloid Interface Sci. 1996, 64, 143–171.
(170) Phan, C. M.; Le, T. N.; Nguyen, C. V; Yusa, S. Modeling Adsorption of Cationic Surfactants at Air/Water Interface without Using the Gibbs Equation. Langmuir 2013, 29 (15), 4743–4749.
(171) Geng, F.; Yu, L.; Lu, T.; Li, Z.; Zheng, L. Q.; Li, G. Z. Studies on the Effects of Additional Components on Micellization of CTAB via Surface Tension Measurements. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 257-258 (9), 375–379.
(172) Espinosa, G.; Langevin, D. Interfacial Shear Rheology of Mixed Polyelectrolyte-Surfactant Layers. Langmuir 2009, 25 (20), 12201–12207.
(173) Lyadinskaya, V. V.; Lin, S.-Y.; Noskov, B. A. Dynamic Surface Elasticity of the Mixed Solutions of DNA and Cetyltrimethylammonium Bromide. Mendeleev Commun. 2016, 26 (1), 64–65.
(174) Lyadinskaya, V. V. Phase Transitions in DNA Surfactant Adsorption Layers. Langmuir 2016.
(175) Munoz-Ubeda, M.; Misra, S. K.; Barran-Berdon, A. L.; Aircart-Ramos, C.; Sierra, M. B.; Biswas, J.; Kondaiah, P.; Junquera, E.; Bhattacharya, S.; Aicart, E. Why Is Less Cationic Lipid Required To Prepare Lipoplexes from. JACS 2011, 133, 18014–18017.

QR CODE