簡易檢索 / 詳目顯示

研究生: 巫祈和
CHI-Ho Wu
論文名稱: 具有 3D 列印骨架之塊材吸附劑製作開發
Preparation of Monolithic Adsorbents with DLP 3D Printing Skeleton
指導教授: 林昇佃
Shawn D. Lin
Türkan Kopaç
Türkan Kopaç
口試委員: Turkan Kopac
Turkan Kopac
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 209
中文關鍵詞: 金屬有機框架材料活性碳DLP 3D 列印甲烷二氧化碳吸附劑
外文關鍵詞: Metal-organic frameworks (MOFs), Activated carbon, DLP 3D Printing, Carbon dioxide, Methane, 3D-printed MOFs
相關次數: 點閱:246下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲烷可提供的能量大約是煤的兩倍,且於燃燒反應不會逸散劇毒的汞蒸氣與產生富含鈾和釷的灰燼。然而,甲烷如同二氧化碳作為溫室氣體的主要成分,為導致全球暖化之主因。甲烷與二氧化碳的吸附研究,對於捕獲和儲存這兩種分子至關重要。開發具捕獲和儲存應用價值的吸附劑,將得以充分利用清潔能源並防止污染與暖化的持續。

    金屬有機框架(MOF)作為近年最流行的吸附劑選擇,提供極高的表面積、孔體積和與可調的多功能結構,其優異特性使其成為最具吸引力的儲氣應用材料之一。活性炭(AC)由不同的前體生產並基於低成本優勢,提供了大範圍的孔結構和表面化學,幾十年來亦廣泛應用於吸附劑領域。
    由於填充床吸附系統具有壓降缺陷,粉末形式的MOF和AC於利用率較低。塊材吸附劑在壓降和傳質動力學方面優於傳統顆粒吸附劑。相較於傳統的密實化成型工藝,3D列印開拓新穎的製備方法,快速成型、低成本效益與高活性的優勢,使該技術更適合製備具有可調結構的塊材吸附劑。

    本研究中嘗試了兩種塊材吸附劑的製備方法,即(1)全集成式 與 (2)吸附劑塗佈式 3D列印塊材吸附劑,並採用經優化設計的毫米級晶格作為3D列印架構。
    對於氣體儲存應用,研究了甲烷與二氧化碳在具備不同MOF(或AC)附載量之塊材吸附劑的吸附/解吸與利用率。塊材吸附劑皆採用商用MOF和AC粉末進行製備,並對其物理和結構性能進行了特徵,包括氮氣等溫線、吸附參數、吸附容量和吸附動力學。亦研究了孔結構、溫度、壓力與單體比例對吸附和活化條件的影響。 成功開發的塊材吸附劑保留最高73 %的利用率、優異的氣體儲存容量與更快的吸附速率,達到ASTM 3B的吸附劑塗層附著力,且抗壓強度達到12 MPa。該研究結果將有助於設計有效的氣體儲存系統。

    關鍵字:金屬有機框架材料(MOF); 活性碳; DLP 3D列印; 甲烷; 二氧化碳


    Methane provides about twice as much energy as coal, which does not dissipate mercury or produce ashes rich in uranium and thorium. However, methane is one major component of greenhouse gases causing global warming. The adsorption of carbon dioxide and methane is important for trapping and storage of both molecules and therefore, the development of workable adsorbents is a key issue for the storage and sequestration of these gases in order to utilize clean energy and prevent continuation of air pollution.

    Metal-organic frameworks (MOFs) are among the most popular selections for adsorbents, which can provide a very high surface area, high pore volume and tunable versatile structures. The superior characteristics of MOFs make them one of the most attractive materials for gas storage applications. Activated carbon (AC) is conventionally used as adsorbents due to its low-cost advantage, which can be produced from different precursors providing a large spectrum of pore structures and surface chemistry for wide application in adsorption for decades.

    Both MOFs and AC in powder form may not be engineeringly suitable for adsorption application owing to the possibly large pressure drop in packed bed adsorption system. Monolithic adsorbents are superior to conventional pellet, both fabricated from powders, in terms of pressure drop and mass transfer kinetics. Comparing to traditional "shaping" processes, utilizing 3D printing technology may provide an alternative cost-effective and simple method to fabricate the monolithic adsorbent with tunable structural morphology.

    In this study, we tried two preparation methods of monolithic adsorbents, namely (1) the all integrated adsorbent-based 3D printed structure, and (2) the adsorbent-coated 3D printed structure, for optimal design of millimeter-scale adsorbent “shape”. For gas storage application, we investigated the sorption properties of carbon dioxide and methane on various types of 3D-printed structures with different MOF (or AC) content, in short as 3D-printed MOF/AC. The 3D-printed MOF/AC is prepared from commercially available MOF/AC powders and their physical and structural properties were characterized. Carbon dioxide and methane adsorption/desorption on 3D-printed MOF/AC are examined, including isotherms, adsorption parameters, adsorption capacities, adsorption kinetics. The effects of pore structure, temperature, pressure on adsorption and activation conditions were also investigated.

    The fabricated 3D-printed MOF/AC can have a utilization up to 73%, with an adsorbent-coated adhesion of at least ASTM 3B level and a compressive mechanical strength of 12 MPa. The results show that 3D-printed MOF/AC is stable, have an acceptable gas storage capacity and faster adsorption rate in high-pressure gas adsorption applications. The findings of the study would be useful in the design of effective gases storage systems

    Keywords: Metal-organic frameworks (MOFs); Activated carbon; Carbon dioxide; Methane; 3D-printed MOFs

    AbstractinChinese .......................... iv AbstractinEnglish .......................... v Acknowledgments.......................... vii Contents................................ ix List of Figures............................. xv List of Tables .............................xxiv 1 Literature review ......................... 1 1.1 Introduction......................... 1 1.1.1 Additive manufacturing technology of monolithic adsorbent...................... 1 1.1.2 Technicalclassification............... 3 1.2 Vat photopolymerization technology . . . . . . . . . . . . 5 1.2.1 Mechanism of photopolymerization modeling . . . 5 1.2.2 The characters of different photocuring 3D printing techniques ..................... 7 1.3 The main components of photocurable resin . . . . . . . . 9 1.3.1 Oligomer ...................... 10 1.3.2 Monomer...................... 12 1.3.3 Photoinitiatior ................... 15 1.3.4 Functionaladditives ................ 16 1.4 Comparison of monolithic adsorbent based on different 3DP technologies......................... 17 1.4.1 Monolithic adsorbents for adsorption application . 18 1.4.2 Binderstrategies .................. 23 1.5 Three preparations of monolithic adsorbents based on DLP technology.......................... 29 1.5.1 All-integrated adsorbent-based 3D-printed device . 30 1.5.2 Adsorbent-coated 3D-printed device . . . . . . . . 31 1.5.3 Coordination polymers (CPs) of 3D-printed device 32 1.6 Adsorbent materials for carbon dioxide (CO2) captures . . 34 1.6.1 Activated Carbon (AC) for CO2 captures . . . . . 35 1.6.2 Metal-Organic Framework (MOF) for CO2 captures 37 1.7 Adsorbent materials for methane (CH4) storage . . . . . . 39 1.7.1 Activated Carbon (AC) for CH4 storage . . . . . . 40 1.7.2 Metal-Organic Framework (MOF) for CH4 storage 43 2 ExperimentalSection ....................... 45 2.1 MaterialsandInstruments.................. 45 2.1.1 Materials ...................... 45 2.1.2 Gases........................ 47 2.1.3 Instruments..................... 48 2.2 Materialpreparation..................... 49 2.2.1 Modification of photoreactive oligomers . . . . . . 49 2.2.2 Photo-curing resin formulation........... 50 2.2.3 Preparation of adsorbent-embedded photocurable ink 51 2.2.4 Preparation of Adsorbent Coating Ink . . . . . . . 52 2.2.5 DLP3DPrintingsystem .............. 56 2.3 Characterization....................... 59 2.3.1 X-raydiffraction(XRD) .............. 59 2.3.2 Thermogravimetric analysis (TGA) . . . . . . . . 59 2.3.3 Scanning electron microscope (SEM) . . . . . . . 59 2.3.4 Adsorption-desorption isotherms . . . . . . . . . . 60 2.3.5 High pressure gas adsorption analyzer . . . . . . . 60 2.3.6 Universaltesting .................. 62 2.3.7 Viscosimetry .................... 63 2.3.8 Differential scanning calorimetry (DSC) . . . . . . 63 2.3.9 Cross-cutadhesiontesting ............. 64 2.4 Calculation criteria of prepared monolithic adsorbent . . . 65 2.4.1 Monolithicadsorbentloading . . . . . . . . . . . 65 2.4.2 Adsorbent utilization of monolithic adsorbent . . . 67 2.4.3 NormalizationofN2 isotherm . . . . . . . . . . . 67 2.4.4 Preparationcriteria................. 68 3 Preparation of 3D printed Adsorbent-embedded monoliths . . . 70 3.1 Motivation.......................... 70 3.2 Photocurableresinformulation............... 72 3.2.1 Monomer selection for photocurable resins . . . . 72 3.2.2 Characterization of photocured resins . . . . . . . 76 3.2.3 Characterization of 5 % adsorbent loading monolithic adsorbents .................. 80 3.3 Optimization of Activated carbon-embedded monolith . . 84 3.3.1 Adsorbent-embedded loading and characterization 84 3.3.2 Carbonizationpost-treatment............ 88 3.3.3 Characterization of optimal AC-embedded monoliths 99 3.4 Preparation of Metal-Organic Frameworks (MOFs)-embedded monoliths . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.4.1 Characterization of 4 commercial MOFs . . . . . . 105 3.4.2 Characterization of MOFs-embedded monoliths . . 107 3.5 High pressure adsorption behavior and application . . . . . 112 3.6 Summary .......................... 119 4 3D Printed Skeletons with Adsorbent Coatings . . . . . . . . . . 121 4.1 Motivation.......................... 121 4.2 Loading control by repeated wash-coating . . . . . . . . . 122 4.2.1 Workmanshipofwash-coating . . . . . . . . . . . 122 4.2.2 Adsorbentutilization................ 128 4.2.3 Coatingadhesion.................. 133 4.3 Influenceof3DPskeletonstructure . . . . . . . . . . . . 135 4.4 Preparation of MOF-based monolithic Adsorbents . . . . . 147 4.4.1 PreparationofMOFmonolith . . . . . . . . . . . 148 4.4.2 Monolithic adsorbents characterization . . . . . . 155 4.5 High pressure adsorption behavior and application . . . . . 163 4.6 Summary ..........................169 5 Conclusions ............................ 170 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Appendix 1:TGA of the raw materials of photocured resin and AC powderunderN2atmosphere.................... 186 Appendix 2:TGA and DTG analysis of 1 % AC monolithic adsorbents in 3 different monomer ratios based on CTFA and IBOA . 189 Appendix 3:BET results of 1% AC loading monolithic adsorbents in different CTFA and IBOA monomer ratios. . . . . . . . . . . 192 Appendix4:BET result of 4 commercial MOFs . . . . . . . . . . 196 Appendix5:SEM images of 4 commercial MOFs . . . . . . . . . 198 Appendix 6:BET results of 5% MOF monolithic adsorbents with post-treatment............................ 200 Appendix 7:Adsorption rate analysis of five monolithic adsorbents based on L.D.F approximation and Crank equation in Chapter 4 . 203 Appendix 8:Crosslinking densities of adsorbent-free / adsorbent- embeddedphotocuredresin..................... 206 Appendix 8:Crosslinking densities of adsorbent-free / adsorbent- embeddedphotocuredresin..................... 208

    [1] P. Nesvadba, “Radical polymerization in industry,” Encyclopedia of Radicals in Chemistry, Biology and Materials, 2012.
    [2] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3d printing and cus- tomized additive manufacturing,” Chemical reviews, vol. 117, no. 15, pp. 10212–10290, 2017.
    [3] D. Zhang, J. Xiao, Q. Guo, and J. Yang, “3d-printed highly porous and reusable chitosan monoliths for cu (ii) removal,” Journal of Materials Science, vol. 54, no. 8, pp. 6728–6741, 2019.
    [4] A. Namera, A. Nakamoto, T. Saito, and S. Miyazaki, “Monolith as a new sample preparation material: recent devices and applications,” Journal of separation science, vol. 34, no. 8, pp. 901–924, 2011.
    [5] Y. Jiang and Q. Wang, “Highly-stretchable 3d-architected mechanical metamaterials,” Scientific re- ports, vol. 6, no. 1, pp. 1–11, 2016.
    [6] H. Thakkar, S. Eastman, Q. Al-Naddaf, A. A. Rownaghi, and F. Rezaei, “3d-printed metal–organic framework monoliths for gas adsorption processes,” ACS applied materials & interfaces, vol. 9, no. 41, pp. 35908–35916, 2017.
    [7] M. Bible, M. Sefa, J. A. Fedchak, J. Scherschligt, B. Natarajan, Z. Ahmed, and M. R. Hartings, “3d- printed acrylonitrile butadiene styrene-metal organic framework composite materials and their gas storage properties,” 3D Printing and Additive Manufacturing, vol. 5, no. 1, pp. 63–72, 2018.
    [8] O. Halevi, J. M. Tan, P. S. Lee, and S. Magdassi, “Hydrolytically stable mof in 3d-printed structures,” Advanced Sustainable Systems, vol. 2, no. 2, p. 1700150, 2018.
    [9] B. Chen, R. Davies, H. Chang, Y. Xia, Y. Zhu, and O. Ghita, “In-situ synthesis of metal organic frameworks (mofs)-pa12 powders and their laser sintering into hierarchical porous lattice structures,” Additive Manufacturing, vol. 38, p. 101774, 2021.
    [10] R. J. Morrison, S. J. Hollister, M. F. Niedner, M. G. Mahani, A. H. Park, D. K. Mehta, R. G. Ohye, and G. E. Green, “Mitigation of tracheobronchomalacia with 3d-printed personalized medical devices in pediatric patients,” Science translational medicine, vol. 7, no. 285, pp. 285ra64–285ra64, 2015.
    [11] J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3d printing for novel materials,” Applied materials today, vol. 7, pp. 120–133, 2017.
    [12] B. N. Turner, R. Strong, and S. A. Gold, “A review of melt extrusion additive manufacturing pro- cesses: I. process design and modeling,” Rapid Prototyping Journal, 2014.
    [13] L. M. Leben, J. J. Schwartz, A. J. Boydston, R. J. D’Mello, and A. M. Waas, “Optimized hetero- geneous plates with holes using 3d printing via vat photo-polymerization,” Additive Manufacturing, vol. 24, pp. 210–216, 2018.
    [14] A. T. Gaynor, N. A. Meisel, C. B. Williams, and J. K. Guest, “Multiple-material topology optimiza- tion of compliant mechanisms created via polyjet three-dimensional printing,” Journal of Manufac- turing Science and Engineering, vol. 136, no. 6, 2014.
    [15] D. Hong, D.-T. Chou, O. I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H. A. Kuhn, and P. N. Kumta, “Binder-jetting 3d printing and alloy development of new biodegradable fe-mn-ca/mg alloys,” Acta biomaterialia, vol. 45, pp. 375–386, 2016.
    [16] T. Obikawa, M. Yoshino, and J. Shinozuka, “Sheet steel lamination for rapid manufacturing,” Journal of Materials Processing Technology, vol. 89, pp. 171–176, 1999.
    [17] S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion addi- tive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Materialia, vol. 108, pp. 36–45, 2016.
    [18] B. E. Carroll, T. A. Palmer, and A. M. Beese, “Anisotropic tensile behavior of ti–6al–4v compo- nents fabricated with directed energy deposition additive manufacturing,” Acta Materialia, vol. 87, pp. 309–320, 2015.
    [19] D. Liu, P. Jiang, X. Wang, and W. Liu, “Additively manufacturing metal- organic frameworks and derivatives: Methods, functional objects, and applications,” in Metal- Organic Frameworks for Car- bon Capture and Energy, pp. 17–51, ACS Publications, 2021.
    [20] D. Han and H. Lee, “Recent advances in multi-material additive manufacturing: Methods and appli- cations,” Current Opinion in Chemical Engineering, vol. 28, pp. 158–166, 2020.
    [21] S. H. Ahn, S. H. Kim, B. C. Kim, K. B. Shim, and B. G. Cho, “Mechanical properties of silica nanoparticle reinforced poly (ethylene 2, 6-naphthalate),” Macromolecular Research, vol. 12, no. 3, pp. 293–302, 2004.
    [22] S. Benfarhi, C. Decker, L. Keller, and K. Zahouily, “Synthesis of clay nanocomposite materials by light-induced crosslinking polymerization,” European Polymer Journal, vol. 40, no. 3, pp. 493–501, 2004.
    [23] A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, “A study of the evolution of mechanical prop- erties and structural heterogeneity of polymer networks formed by photopolymerizations of multi- functional (meth) acrylates,” Polymer, vol. 39, no. 12, pp. 2507–2513, 1998.
    [24] R. L. Truby and J. A. Lewis, “Printing soft matter in three dimensions,” Nature, vol. 540, no. 7633, pp. 371–378, 2016.
    [25] E. M. Maines, M. K. Porwal, C. J. Ellison, and T. M. Reineke, “Sustainable advances in sla/dlp 3d printing materials and processes,” Green Chemistry, 2021.
    [26] V. Chan, P. Zorlutuna, J. H. Jeong, H. Kong, and R. Bashir, “Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation,” Lab on a Chip, vol. 10, no. 16, pp. 2062–2070, 2010.
    [27] R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu, and Z. Xie, “Fabrication of complex-shaped zirconia ceramic parts via a dlp-stereolithography-based 3d printing method,” Ceramics International, vol. 44, no. 3, pp. 3412–3416, 2018.
    [28] B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, “Evaluation of 3d printing and its potential impact on biotechnology and the chemical sciences,” 2014.
    [29] E. N. Antonov, V. N. Bagratashvili, M. J. Whitaker, J. J. Barry, K. M. Shakesheff, A. N. Konovalov, V. K. Popov, and S. M. Howdle, “Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering,” Advanced materials, vol. 17, no. 3, pp. 327–330, 2005.
    [30] D. K. Patel, A. H. Sakhaei, M. Layani, B. Zhang, Q. Ge, and S. Magdassi, “Highly stretchable and uv curable elastomers for digital light processing based 3d printing,” Advanced Materials, vol. 29, no. 15, p. 1606000, 2017.
    [31] C. Sun, N. Fang, D. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro- mirror dynamic mask,” Sensors and Actuators A: Physical, vol. 121, no. 1, pp. 113–120, 2005.
    [32] M. Sangermano, M. Messori, M. M. Galleco, G. Rizza, and B. Voit, “Scratch resistant tough nanocomposite epoxy coatings based on hyperbranched polyesters,” Polymer, vol. 50, no. 24, pp. 5647–5652, 2009.
    [33] M.-S. Yen, C.-N. Huang, and P.-D. Hong, “Synthesis and characteristics of aqueous reactive urethane oligomer containing sulfoisophthalate sodium salt,” Journal of applied polymer science, vol. 106, no. 5, pp. 2907–2916, 2007.
    [34] J. Cheng, M. Li, Y. Cao, Y. Gao, J. Liu, and F. Sun, “Synthesis and properties of photopolymer- izable bifunctional polyether-modified polysiloxane polyurethane acrylate prepolymer,” Journal of adhesion science and Technology, vol. 30, no. 1, pp. 2–12, 2016.
    [35] Y.-J. Park, D.-H. Lim, H.-J. Kim, D.-S. Park, and I.-K. Sung, “Uv-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers,” International Journal of Adhesion and Adhesives, vol. 29, no. 7, pp. 710–717, 2009.
    [36] H. Xu, F. Qiu, Y. Wang, W. Wu, D. Yang, and Q. Guo, “Uv-curable waterborne polyurethane-acrylate: preparation, characterization and properties,” Progress in Organic Coatings, vol. 73, no. 1, pp. 47– 53, 2012.
    [37] D. S. Kim and W. H. Seo, “Ultraviolet-curing behavior and mechanical properties of a polyester acrylate resin,” Journal of applied polymer science, vol. 92, no. 6, pp. 3921–3928, 2004.
    [38] C. Decker, K. Moussa, and T. Bendaikha, “Photodegradation of uv-cured coatings ii. polyurethane– acrylate networks,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 29, no. 5, pp. 739– 747, 1991.
    [39] N. Egger, K. Schmidt-Rohr, B. Blümich, W.-D. Domke, and B. Stapp, “Solid state nmr investigation of cationic polymerized epoxy resins,” Journal of applied polymer science, vol. 44, no. 2, pp. 289– 295, 1992.
    [40] Y. Wang, M. A. Rodriguez-Perez, R. L. Reis, and J. F. Mano, “Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications,” Macromolecular Materials and Engineering, vol. 290, no. 8, pp. 792–801, 2005.
    [41] R. K. Kulkarni, E. Moore, A. Hegyeli, and F. Leonard, “Biodegradable poly (lactic acid) polymers,” Journal of biomedical materials research, vol. 5, no. 3, pp. 169–181, 1971.
    [42] A. J. Lasprilla, G. A. Martinez, B. H. Lunelli, A. L. Jardini, and R. Maciel Filho, “Poly-lactic acid synthesis for application in biomedical devices—a review,” Biotechnology advances, vol. 30, no. 1, pp. 321–328, 2012.
    [43] Y. He, C. J. Tuck, E. Prina, S. Kilsby, S. D. Christie, S. Edmondson, R. J. Hague, F. R. Rose, and R. D. Wildman, “A new photocrosslinkable polycaprolactone-based ink for three-dimensional inkjet printing,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 105, no. 6, pp. 1645–1657, 2017.
    [44] M. O. Odar et al., “Adsorption and determination of lead in water and human urine samples based on zn2 (bdc) 2 (dabco) mof as polycaprolactone nanocomposite by suspension micro solid phase ex- traction coupled to uv–vis spectroscopy,” Analytical Methods in Environmental Chemistry Journal, vol. 4, no. 03, pp. 5–20, 2021.
    [45] D. S. Tathe and R. Jagtap, “Biobased reactive diluent for uv-curable urethane acrylate oligomers for wood coating,” Journal of Coatings Technology and Research, vol. 12, no. 1, pp. 187–196, 2015.
    [46] Y. Hu, Q. Shang, J. Tang, C. Wang, F. Zhang, P. Jia, G. Feng, Q. Wu, C. Liu, L. Hu, et al., “Use of cardanol-based acrylate as reactive diluent in uv-curable castor oil-based polyurethane acrylate resins,” Industrial crops and products, vol. 117, pp. 295–302, 2018.
    [47] M. Oguri, Y. Yoshida, K. Yoshihara, T. Miyauchi, Y. Nakamura, S. Shimoda, M. Hanabusa, Y. Mo- moi, and B. Van Meerbeek, “Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive,” Acta Biomaterialia, vol. 8, no. 5, pp. 1928–1934, 2012.
    [48] H. Kilambi, S. K. Reddy, L. Schneidewind, T. Y. Lee, J. W. Stansbury, and C. N. Bowman, “Design, development, and evaluation of monovinyl acrylates characterized by secondary functionalities as reactive diluents to diacrylates,” Macromolecules, vol. 40, no. 17, pp. 6112–6118, 2007.
    [49] X. Wang and M. D. Soucek, “Investigation of non-isocyanate urethane dimethacrylate reactive dilu- ents for uv-curable polyurethane coatings,” Progress in Organic Coatings, vol. 76, no. 7-8, pp. 1057– 1067, 2013.
    [50] C. J. Thrasher, J. J. Schwartz, and A. J. Boydston, “Modular elastomer photoresins for digital light processing additive manufacturing,” ACS applied materials & interfaces, vol. 9, no. 45, pp. 39708– 39716, 2017.
    [51] R. W. Arcı́s, A. López-Macipe, M. Toledano, E. Osorio, R. Rodrı́guez-Clemente, J. Murtra, M. A. Fanovich, and C. D. Pascual, “Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration,” Dental Materials, vol. 18, no. 1, pp. 49–57, 2002.
    [52] F. Wang, J. Hu, and W. Tu, “Study on microstructure of uv-curable polyurethane acrylate films,” Progress in Organic Coatings, vol. 62, no. 3, pp. 245–250, 2008.
    [53] Y. Guo, Z. Ji, Y. Zhang, X. Wang, and F. Zhou, “Solvent-free and photocurable polyimide inks for 3d printing,” Journal of Materials Chemistry A, vol. 5, no. 31, pp. 16307–16314, 2017.
    [54] E. Yildiz, H. Güçlü, H. Yildirim, A. Kuyulu, and A. Güngör, “Effects of reactive diluents on mechan- ical and physical properties of a uv curable acrylated urethane prepolymer,” Die Angewandte Makro- molekulare Chemie: Applied Macromolecular Chemistry and Physics, vol. 230, no. 1, pp. 105–115, 1995.
    [55] H. Zhao, X. Ding, P. Yang, L. Li, X. Li, and Y. Zhang, “A novel multi-armed and star-like poly (ethylene oxide) membrane for co2 separation,” Journal of Membrane Science, vol. 489, pp. 258– 263, 2015.
    [56] J. Hong, H. Kim, J. Yu, and Y. Kim, “Characterization of uv-curable reactive diluent containing quaternary ammonium salts for antistatic coating,” Journal of applied polymer science, vol. 84, no. 1, pp. 132–137, 2002.
    [57] C. Li, J. Cheng, W. Chang, and J. Nie, “Photopolymerization kinetics and properties of a trifunctional epoxy acrylate,” Designed Monomers and Polymers, vol. 16, no. 3, pp. 274–282, 2013.
    [58] G. Phalak, D. Patil, V. Vignesh, and S. Mhaske, “Development of tri-functional biobased reac- tive diluent from ricinoleic acid for uv curable coating application,” Industrial Crops and Products, vol. 119, pp. 9–21, 2018.
    [59] A. Palanisamy and B. Rao, “Photo-dsc and dynamic mechanical studies on uv curable compositions containing diacrylate of ricinoleic acid amide derived from castor oil,” Progress in organic coatings, vol. 60, no. 3, pp. 161–169, 2007.
    [60] N. Emami and K.-J. Söderholm, “Influence of light-curing procedures and photo-initiator/co-initiator composition on the degree of conversion of light-curing resins,” Journal of Materials Science: Ma- terials in Medicine, vol. 16, no. 1, pp. 47–52, 2005.
    [61] M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” JOSA B, vol. 25, no. 3, pp. 396–406, 2008.
    [62] A. Santini, I. T. Gallegos, and C. M. Felix, “Photoinitiators in dentistry: a review,” Primary dental journal, vol. 2, no. 4, pp. 30–33, 2013.
    [63] M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” JOSA B, vol. 23, no. 10, pp. 2079– 2088, 2006.
    [64] J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn, “Effects of surface modification on rheological and mechanical properties of cnt/epoxy composites,” Carbon, vol. 44, no. 10, pp. 1898–1905, 2006.
    [65] K. Yang, M. Gu, Y. Guo, X. Pan, and G. Mu, “Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites,” Carbon, vol. 47, no. 7, pp. 1723–1737, 2009.
    [66] B. Wang, A. J. Benitez, F. Lossada, R. Merindol, and A. Walther, “Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers,” Angewandte Chemie, vol. 128, no. 20, pp. 6070–6074, 2016.
    [67] J.-D. Cho, Y.-B. Kim, H.-T. Ju, and J.-W. Hong, “The effects of silica nanoparticles on the photocur- ing behaviors of uv-curable polyester acrylate-based coating systems,” Macromolecular Research, vol. 13, no. 4, pp. 362–365, 2005.
    [68] H. Wang, P. Wang, Q. Wang, R. Zhang, and L. Zhang, “Preparation of a high-precision gama-al2o3 structured catalyst by dlp 3d direct printing for hydrogen production from methanol,” Industrial & Engineering Chemistry Research, vol. 60, no. 35, pp. 13107–13114, 2021.
    [69] W. Y. Lieu, D. Fang, K. J. Tay, X. L. Li, W. C. Chu, Y. S. Ang, D.-S. Li, L.-K. Ang, Y. Wang, and H. Y. Yang, “Progress on 3d-printed metal-organic frameworks with hierarchical structures,” Advanced Materials Technologies, p. 2200023, 2022.
    [70] P. Michorczyk, E. Hędrzak, and A. Węgrzyniak, “Preparation of monolithic catalysts using 3d printed templates for oxidative coupling of methane,” Journal of Materials Chemistry A, vol. 4, no. 48, pp. 18753–18756, 2016.
    [71] S. Lawson, X. Li, H. Thakkar, A. A. Rownaghi, and F. Rezaei, “Recent advances in 3d printing of structured materials for adsorption and catalysis applications,” Chemical Reviews, vol. 121, no. 10, pp. 6246–6291, 2021.
    [72] Y. Xu, X. Wu, X. Guo, B. Kong, M. Zhang, X. Qian, S. Mi, and W. Sun, “The boom in 3d-printed sensor technology,” Sensors, vol. 17, no. 5, p. 1166, 2017.
    [73] G. J. Lim, Y. Wu, B. B. Shah, J. J. Koh, C. K. Liu, D. Zhao, A. K. Cheetham, J. Wang, and J. Ding, “3d-printing of pure metal–organic framework monoliths,” ACS Materials Letters, vol. 1, no. 1, pp. 147–153, 2019.
    [74] J. Dhainaut, M. Bonneau, R. Ueoka, K. Kanamori, and S. Furukawa, “Formulation of metal–organic framework inks for the 3d printing of robust microporous solids toward high-pressure gas storage and separation,” ACS Applied Materials & Interfaces, vol. 12, no. 9, pp. 10983–10992, 2020.
    [75] W. Y. Hong, S. P. Perera, and A. D. Burrows, “Manufacturing of metal-organic framework monoliths and their application in co2 adsorption,” Microporous and Mesoporous Materials, vol. 214, pp. 149– 155, 2015.
    [76] M. J. Regufe, A. F. Ferreira, J. M. Loureiro, A. Rodrigues, and A. M. Ribeiro, “Electrical conductive 3d-printed monolith adsorbent for co2 capture,” Microporous and Mesoporous Materials, vol. 278, pp. 403–413, 2019.
    [77] K. A. Evans, Z. C. Kennedy, B. W. Arey, J. F. Christ, H. T. Schaef, S. K. Nune, and R. L. Erik- son, “Chemically active, porous 3d-printed thermoplastic composites,” ACS applied materials & interfaces, vol. 10, no. 17, pp. 15112–15121, 2018.
    [78] E. Lahtinen, R. L. Precker, M. Lahtinen, E. Hey-Hawkins, and M. Haukka, “Selective laser sintering of metal-organic frameworks: Production of highly porous filters by 3d printing onto a polymeric matrix,” ChemPlusChem, vol. 84, no. 2, pp. 222–225, 2019.
    [79] A. Kafle, E. Luis, R. Silwal, H. M. Pan, P. L. Shrestha, and A. K. Bastola, “3d/4d printing of poly- mers: Fused deposition modelling (fdm), selective laser sintering (sls), and stereolithography (sla),” Polymers, vol. 13, no. 18, p. 3101, 2021.
    [80] S. Lawson, A.-A. Alwakwak, A. A. Rownaghi, and F. Rezaei, “Gel–print–grow: A new way of 3d printing metal–organic frameworks,” ACS Applied Materials & Interfaces, vol. 12, no. 50, pp. 56108–56117, 2020.
    [81] R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang, A. Lai, S.-F. Zhou, and G. Zhan, “3d-printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal,” Jour- nal of hazardous materials, vol. 384, p. 121418, 2020.
    [82] Q. Liu, H. Yu, F. Zeng, X. Li, J. Sun, C. Li, H. Lin, and Z. Su, “Hkust-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue,” Carbohydrate Polymers, vol. 255, p. 117402, 2021.
    [83] J. Huang and P. Wu, “Controlled assembly of luminescent lanthanide-organic frameworks via post- treatment of 3d-printed objects,” Nano-micro letters, vol. 13, no. 1, pp. 1–14, 2021.
    [84] S. Sultan, H. N. Abdelhamid, X. Zou, and A. P. Mathew, “Cellomof: nanocellulose enabled 3d printing of metal–organic frameworks,” Advanced Functional Materials, vol. 29, no. 2, p. 1805372, 2019.
    [85] C.-T. Hsieh, K. Ariga, L. K. Shrestha, and S.-h. Hsu, “Development of mof reinforcement for struc- tural stability and toughness enhancement of biodegradable bioinks,” Biomacromolecules, vol. 22, no. 3, pp. 1053–1064, 2021.
    [86] P. Pei, Z. Tian, and Y. Zhu, “3d printed mesoporous bioactive glass/metal-organic framework scaf- folds with antitubercular drug delivery,” Microporous and Mesoporous Materials, vol. 272, pp. 24– 30, 2018.
    [87] W. Dang, B. Ma, B. Li, Z. Huan, N. Ma, H. Zhu, J. Chang, Y. Xiao, and C. Wu, “3d printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construc- tion,” Biofabrication, vol. 12, no. 2, p. 025005, 2020.
    [88] L. Zhong, J. Chen, Z. Ma, H. Feng, S. Chen, H. Cai, Y. Xue, X. Pei, J. Wang, and Q. Wan, “3d printing of metal–organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration,” Nanoscale, vol. 12, no. 48, pp. 24437–24449, 2020.
    [89] A. D. Salazar-Aguilar, A. Quintanilla, S. M. Vega-Díaz, J. A. Casas, P. Miranzo, M. I. Osendi, and M. Belmonte, “Iron-based metal-organic frameworks integrated into 3d printed ceramic architec- tures,” Open Ceramics, vol. 5, p. 100047, 2021.
    [90] D. Liu, P. Jiang, X. Li, J. Liu, L. Zhou, X. Wang, and F. Zhou, “3d printing of metal-organic frame- works decorated hierarchical porous ceramics for high-efficiency catalytic degradation,” Chemical Engineering Journal, vol. 397, p. 125392, 2020.
    [91] S. Lawson, C. Griffin, K. Rapp, A. A. Rownaghi, and F. Rezaei, “Amine-functionalized mil-101 monoliths for co2 removal from enclosed environments,” Energy & Fuels, vol. 33, no. 3, pp. 2399– 2407, 2019.
    [92] C. A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros, S. D. Jacques, A. M. Beale, M. Di Michiel, K. A. Andreassen, and A. M. Bouzga, “Multiscale investigation of adsorption prop- erties of novel 3d printed utsa-16 structures,” Chemical Engineering Journal, vol. 402, p. 126166, 2020.
    [93] J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi, and J. F. Denayer, “3d-printed zeolitic imidazolate framework structures for adsorptive separations,” ACS Applied Nano Materials, vol. 2, no. 8, pp. 4991–4999, 2019.
    [94] B. Claessens, N. Dubois, J. Lefevere, S. Mullens, J. Cousin-Saint-Remi, and J. F. Denayer, “3d- printed zif-8 monoliths for biobutanol recovery,” Industrial & Engineering Chemistry Research, vol. 59, no. 18, pp. 8813–8824, 2020.
    [95] A. J. Young, R. Guillet-Nicolas, E. S. Marshall, F. Kleitz, A. J. Goodhand, L. B. Glanville, M. R. Reithofer, and J. M. Chin, “Direct ink writing of catalytically active uio-66 polymer composites,” Chemical Communications, vol. 55, no. 15, pp. 2190–2193, 2019.
    [96] Z. Lyu, G. J. Lim, R. Guo, Z. Kou, T. Wang, C. Guan, J. Ding, W. Chen, and J. Wang, “3d-printed mof-derived hierarchically porous frameworks for practical high-energy density li–o2 batteries,” Ad- vanced Functional Materials, vol. 29, no. 1, p. 1806658, 2019.
    [97] H. Yang, F. Ji, Z. Li, and S. Tao, “Preparation of hydrophobic surface on pla and abs by fused depo- sition modeling,” Polymers, vol. 12, no. 7, p. 1539, 2020.
    [98] J. Leng, J. Wu, and J. Zhang, “Preparation of thermoplastic polyurethane parts reinforced with in situ polylactic acid microfibers during fused deposition modeling: the influences of deposition-induced effects,” Industrial & Engineering Chemistry Research, vol. 58, no. 47, pp. 21476–21484, 2019.
    [99] D. Zhu, Y. Ren, G. Liao, S. Jiang, F. Liu, J. Guo, and G. Xu, “Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling,” Journal of Applied Polymer Science, vol. 134, no. 39, p. 45332, 2017.
    [100] J. M. Puigoriol-Forcada, A. Alsina, A. G. Salazar-Martín, G. Gomez-Gras, and M. A. Pérez, “Flexu- ral fatigue properties of polycarbonate fused-deposition modelling specimens,” Materials & Design, vol. 155, pp. 414–421, 2018.
    [101] M. Li, J. Jiang, B. Hu, and W. Zhai, “Fused deposition modeling of hierarchical porous polyetherim- ide assisted by an in-situ co2 foaming technology,” Composites Science and Technology, vol. 200, p. 108454, 2020.
    [102] M. Nabipour, B. Akhoundi, and A. Bagheri Saed, “Manufacturing of polymer/metal composites by fused deposition modeling process with polyethylene,” Journal of Applied Polymer Science, vol. 137, no. 21, p. 48717, 2020.
    [103] S. Wang, H. He, X. Peng, and H. Chen, “Study on performances of graphite-filled polypropylene/ polyamide 6 composites manufactured by fused deposition modeling,” Journal of Applied Polymer Science, vol. 138, no. 31, p. 50751, 2021.
    [104] J. Wu, N. Chen, and Q. Wang, “Preparation of novel thermoplastic poly (vinyl alcohol) with improved processability for fused deposition modeling,” Polymers for Advanced Technologies, vol. 29, no. 5, pp. 1447–1455, 2018.
    [105] H. Zhang, H. Zhang, Y. Xiong, L. Dong, and X. Li, “Development of hierarchical porous bioce- ramic scaffolds with controlled micro/nano surface topography for accelerating bone regeneration,” Materials Science and Engineering: C, vol. 130, p. 112437, 2021.
    [106] H. Zhang, P. Wang, H. Zhang, H. Yang, H. Wang, and L. Zhang, “Structured zeolite monoliths with ultrathin framework for fast co2 adsorption enabled by 3d printing,” Industrial & Engineering Chemistry Research, vol. 59, no. 17, pp. 8223–8229, 2020.
    [107] O. Halevi, J. Chen, G. Thangavel, S. A. Morris, T. B. Uliel, Y. R. Tischler, P. S. Lee, and S. Magdassi, “Synthesis through 3d printing: formation of 3d coordination polymers,” RSC Advances, vol. 10, no. 25, pp. 14812–14817, 2020.
    [108] N. Maldonado, V. G. Vegas, O. Halevi, J. I. Martínez, P. S. Lee, S. Magdassi, M. T. Wharmby, A. E. Platero-Prats, C. Moreno, F. Zamora, et al., “3d printing of a thermo-and solvatochromic compos- ite material based on a cu (ii)–thymine coordination polymer with moisture sensing capabilities,” Advanced Functional Materials, vol. 29, no. 15, p. 1808424, 2019.
    [109] S. A. Aldahash, “Optimum manufacturing parameters in selective laser sintering of pa12 with white cement additives,” The International Journal of Advanced Manufacturing Technology, vol. 96, no. 1, pp. 257–270, 2018.
    [110] S. Sun, X. Gan, Z. Wang, D. Fu, W. Pu, and H. Xia, “Dynamic healable polyurethane for selective laser sintering,” Additive Manufacturing, vol. 33, p. 101176, 2020.
    [111] L. Fang, Y. Wang, and Y. Xu, “Preparation of polypropylene powder by dissolution-precipitation method for selective laser sintering,” Advances in Polymer Technology, vol. 2019, 2019.
    [112] J. Bai, B. Zhang, J. Song, G. Bi, P. Wang, and J. Wei, “The effect of processing conditions on the me- chanical properties of polyethylene produced by selective laser sintering,” Polymer Testing, vol. 52, pp. 89–93, 2016.
    [113] Y. Wang, J. Shen, M. Yan, and X. Tian, “Poly ether ether ketone and its composite powder prepared by thermally induced phase separation for high temperature selective laser sintering,” Materials & Design, vol. 201, p. 109510, 2021.
    [114] J. Dong, P. Li, H. Guan, C. Ge, Y. Bai, Y. Zhao, and X. Zhang, “The synthesis of hkust-1/sio2 com- posite material based on 3d printing,” Inorganic Chemistry Communications, vol. 117, p. 107975, 2020.
    [115] A. Figuerola, D. A. Medina, A. J. Santos-Neto, C. P. Cabello, V. Cerdà, G. T. Palomino, and F. Maya, “Metal–organic framework mixed-matrix coatings on 3d printed devices,” Applied Materials Today, vol. 16, pp. 21–27, 2019.
    [116] P.-Y. Du, W. Gu, and X. Liu, “A three-dimensional nd (iii)-based metal–organic framework as a smart drug carrier,” New Journal of Chemistry, vol. 40, no. 11, pp. 9017–9020, 2016.
    [117] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, and K. Kim, “A homochiral metal–organic porous material for enantioselective separation and catalysis,” Nature, vol. 404, no. 6781, pp. 982– 986, 2000.
    [118] B. S. Caglayan and A. E. Aksoylu, “Co2 adsorption on chemically modified activated carbon,” Jour- nal of hazardous materials, vol. 252, pp. 19–28, 2013.
    [119] H. H. Khoo and R. B. Tan, “Life cycle investigation of co2 recovery and sequestration,” Environ- mental science & technology, vol. 40, no. 12, pp. 4016–4024, 2006.
    [120] A. Zulys, F. Yulia, N. Muhadzib, and Nasruddin, “Biological metal–organic frameworks (bio-mofs) for co2 capture,” Industrial & Engineering Chemistry Research, vol. 60, no. 1, pp. 37–51, 2020.
    [121] R. S. McCulloch, S. Keeling, “20 years of carbon capture and storage.” https: //iea.blob.core.windows.net/assets/24c3d26b-aa44-4b54-b9c0-5201d4d86a04/ 20YearsofCarbonCaptureandStorage_WEB.pdf.
    [122] B. P. Spigarelli and S. K. Kawatra, “Opportunities and challenges in carbon dioxide capture,” Journal of CO2 Utilization, vol. 1, pp. 69–87, 2013.
    [123] Z. Yong, V. G. Mata, and A. E. Rodrigues, “Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature,” Adsorption, vol. 7, no. 1, pp. 41–50, 2001.
    [124] D. Lozano-Castelló, D. Cazorla-Amorós, and A. Linares-Solano, “Usefulness of co2 adsorption at 273 k for the characterization of porous carbons,” Carbon, vol. 42, no. 7, pp. 1233–1242, 2004.
    [125] M. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, “Co2 capture by adsorption with nitrogen enriched carbons,” Fuel, vol. 86, no. 14, pp. 2204–2212, 2007.
    [126] F. Rodriguez-Reinoso, “The role of carbon materials in heterogeneous catalysis,” Carbon, vol. 36, no. 3, pp. 159–175, 1998.
    [127] M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, and A. Shamiri, “A review on surface modifica- tion of activated carbon for carbon dioxide adsorption,” Journal of Analytical and Applied Pyrolysis, vol. 89, no. 2, pp. 143–151, 2010.
    [128] B. Guo, L. Chang, and K. Xie, “Adsorption of carbon dioxide on activated carbon,” Journal of Natural Gas Chemistry, vol. 15, no. 3, pp. 223–229, 2006.
    [129] K.-M. Lee, Y.-H. Lim, C.-J. Park, and Y.-M. Jo, “Adsorption of low-level co2 using modified zeolites and activated carbon,” Industrial & Engineering Chemistry Research, vol. 51, no. 3, pp. 1355–1363, 2012.
    [130] F. Montagnaro, A. Silvestre-Albero, J. Silvestre-Albero, F. Rodríguez-Reinoso, A. Erto, A. Lan- cia, and M. Balsamo, “Post-combustion co2 adsorption on activated carbons with different textural properties,” Microporous and Mesoporous Materials, vol. 209, pp. 157–164, 2015.
    [131] A. Erto, A. Silvestre-Albero, J. Silvestre-Albero, F. Rodríguez-Reinoso, M. Balsamo, A. Lancia, and F. Montagnaro, “Carbon-supported ionic liquids as innovative adsorbents for co2 separation from synthetic flue-gas,” Journal of colloid and interface science, vol. 448, pp. 41–50, 2015.
    [132] D. P. Vargas, L. Giraldo, and J. Moreno-Piraján, “Co2 adsorption on granular and monolith carbona- ceous materials,” Journal of Analytical and Applied Pyrolysis, vol. 96, pp. 146–152, 2012.
    [133] N. A. Rashidi and S. Yusup, “An overview of activated carbons utilization for the post-combustion carbon dioxide capture,” Journal of CO2 utilization, vol. 13, pp. 1–16, 2016.
    [134] V. L. Snoeyink and W. J. Weber, “The surface chemistry of active carbon; a discussion of structure and surface functional groups,” Environmental Science & Technology, vol. 1, no. 3, pp. 228–234, 1967.
    [135] A. H. Berger and A. S. Bhown, “Comparing physisorption and chemisorption solid sorbents for use separating co2 from flue gas using temperature swing adsorption,” Energy Procedia, vol. 4, pp. 562– 567, 2011.
    [136] Y. Ma, H. Tanaka, and R. Matsuda, “Co 2 storage on metal-organic frameworks,” in Nanoporous Materials for Gas Storage, pp. 331–358, Springer, 2019.
    [137] A. Perrin, A. Celzard, A. Albiniak, M. Jasienko-Halat, J. Marêché, and G. Furdin, “Naoh activation of anthracites: effect of hydroxide content on pore textures and methane storage ability,” Microporous and Mesoporous Materials, vol. 81, no. 1-3, pp. 31–40, 2005.
    [138] S.-H. Yeon, S. Osswald, Y. Gogotsi, J. P. Singer, J. M. Simmons, J. E. Fischer, M. A. Lillo-Ródenas, and Á. Linares-Solano, “Enhanced methane storage of chemically and physically activated carbide- derived carbon,” Journal of Power Sources, vol. 191, no. 2, pp. 560–567, 2009.
    [139] X. Wang, J. French, S. Kandadai, and H. T. Chua, “Adsorption measurements of methane on activated carbon in the temperature range (281 to 343) k and pressures to 1.2 mpa,” Journal of Chemical & Engineering Data, vol. 55, no. 8, pp. 2700–2706, 2010.
    [140] A. Policicchio, E. Maccallini, R. G. Agostino, F. Ciuchi, A. Aloise, and G. Giordano, “Higher methane storage at low pressure and room temperature in new easily scalable large-scale produc- tion activated carbon for static and vehicular applications,” Fuel, vol. 104, pp. 813–821, 2013.
    [141] Y. He, W. Zhou, T. Yildirim, and B. Chen, “A series of metal–organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity,” Energy & Environmental Science, vol. 6, no. 9, pp. 2735–2744, 2013.
    [142] E. Salehi, V. Taghikhani, C. Ghotbi, E. N. Lay, and A. Shojaei, “Theoretical and experimental study on the adsorption and desorption of methane by granular activated carbon at 25 c,” Journal of natural gas chemistry, vol. 16, no. 4, pp. 415–422, 2007.
    [143] M. Bastos-Neto, D. Canabrava, A. Torres, E. Rodriguez-Castellon, A. Jiménez-López, D. Azevedo, and C. Cavalcante Jr, “Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures,” Applied Surface Science, vol. 253, no. 13, pp. 5721–5725, 2007.
    [144] A. Arami-Niya, W. M. A. W. Daud, and F. S. Mjalli, “Comparative study of the textural character- istics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption,” Chemical Engineering Research and Design, vol. 89, no. 6, pp. 657–664, 2011.
    [145] N. Bagheri and J. Abedi, “Adsorption of methane on corn cobs based activated carbon,” Chemical Engineering Research and Design, vol. 89, no. 10, pp. 2038–2043, 2011.
    [146] A. Gilman and R. Beckie, “Flow of coal-bed methane to a gallery,” Transport in porous media, vol. 41, no. 1, pp. 1–16, 2000.
    [147] T. A. Makal, J.-R. Li, W. Lu, and H.-C. Zhou, “Methane storage in advanced porous materials,” Chemical Society Reviews, vol. 41, no. 23, pp. 7761–7779, 2012.
    [148] Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, “Methane storage in metal–organic frameworks: current records, surprise findings, and challenges,” Journal of the American Chemical Society, vol. 135, no. 32, pp. 11887–11894, 2013.
    [149] K. Konstas, T. Osl, Y. Yang, M. Batten, N. Burke, A. J. Hill, and M. R. Hill, “Methane storage in metal organic frameworks,” Journal of Materials Chemistry, vol. 22, no. 33, pp. 16698–16708, 2012.
    [150] P. K. Thallapally, S. J. Dalgarno, and J. L. Atwood, “Frustrated organic solids display unexpected gas sorption,” Journal of the American Chemical Society, vol. 128, no. 47, pp. 15060–15061, 2006.
    [151] M. Donohue and G. Aranovich, “Classification of gibbs adsorption isotherms,” Advances in colloid and interface science, vol. 76, pp. 137–152, 1998.
    [152] H. Pan, Y. Yi, Q. Lin, G. Xiang, Y. Zhang, and F. Liu, “Effect of surface chemistry and textu- ral properties of activated carbons for ch4 selective adsorption through low-concentration coal bed methane,” Journal of Chemical & Engineering Data, vol. 61, no. 6, pp. 2120–2127, 2016.
    [153] U. Stoeck, S. Krause, V. Bon, I. Senkovska, and S. Kaskel, “A highly porous metal–organic frame- work, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake,” Chemical Communications, vol. 48, no. 88, pp. 10841–10843, 2012.
    [154] M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, and K. Seki, “Three-dimensional framework with channeling cavities for small molecules:{[M2 (4, 4′-bpy) 3 (NO3) 4]∙ xH2O} n (m= co, ni, zn),” Angewandte Chemie International Edition in English, vol. 36, no. 16, pp. 1725–1727, 1997.
    [155] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, and O. M. Yaghi, “Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage,” Science, vol. 295, no. 5554, pp. 469–472, 2002.
    [156] M. S. Denny Jr and S. M. Cohen, “In situ modification of metal–organic frameworks in mixed-matrix membranes,” Angewandte Chemie International Edition, vol. 54, no. 31, pp. 9029–9032, 2015.
    [157] C. Davidson and A. Feilzer, “Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives,” Journal of dentistry, vol. 25, no. 6, pp. 435–440, 1997.
    [158] J. Ma, A. P. Kalenak, A. G. Wong-Foy, and A. J. Matzger, “Rapid guest exchange and ultra-low sur- face tension solvents optimize metal–organic framework activation,” Angewandte Chemie, vol. 129, no. 46, pp. 14810–14813, 2017.
    [159] M. A. Andrés, P. Fontaine, M. Goldmann, C. Serre, O. Roubeau, and I. Gascón, “Solvent-exchange process in mof ultrathin films and its effect on co2 and methanol adsorption,” Journal of Colloid and Interface Science, vol. 590, pp. 72–81, 2021.
    [160] O. Shekhah, J. Liu, R. Fischer, and C. Wöll, “Mof thin films: existing and future applications,” Chemical Society Reviews, vol. 40, no. 2, pp. 1081–1106, 2011.
    [161] S. Lawson, M. Snarzyk, D. Hanify, A. A. Rownaghi, and F. Rezaei, “Development of 3d-printed polymer-mof monoliths for co2 adsorption,” Industrial & Engineering Chemistry Research, vol. 59, no. 15, pp. 7151–7160, 2019.
    [162] H. Thakkar, S. Lawson, A. A. Rownaghi, and F. Rezaei, “Development of 3d-printed polymer-zeolite composite monoliths for gas separation,” Chemical Engineering Journal, vol. 348, pp. 109–116, 2018.
    [163] X. Cheng, A. Zhang, K. Hou, M. Liu, Y. Wang, C. Song, G. Zhang, and X. Guo, “Size-and morphology-controlled nh 2-mil-53 (al) prepared in dmf–water mixed solvents,” Dalton Transac- tions, vol. 42, no. 37, pp. 13698–13705, 2013.
    [164] X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, and Z. Sun, “3d printable graphene composite,” Scientific reports, vol. 5, no. 1, pp. 1–7, 2015.
    [165] G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, and S. Turri, “3d-printable cfr polymer composites with dual-cure sequential ipns,” Polymer, vol. 91, pp. 174–179, 2016.
    [166] V. K. Singh and E. A. Kumar, “Measurement and analysis of adsorption isotherms of co2 on activated carbon,” Applied Thermal Engineering, vol. 97, pp. 77–86, 2016.
    [167] X. Zhou, H. Yi, X. Tang, H. Deng, and H. Liu, “Thermodynamics for the adsorption of so2, no and co2 from flue gas on activated carbon fiber,” Chemical Engineering Journal, vol. 200, pp. 399–404, 2012.

    QR CODE