簡易檢索 / 詳目顯示

研究生: 游勝傑
Sheng-Chieh You
論文名稱: 平面式指向性無線區域網路陣列天線研究
Planar Directive Wireless LAN Array Antenna
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 楊成發
Chang-Fa Yang
馬自莊
Tzyh-Ghuang Ma
蕭宇廷
Yu-Ting Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 無線區域網路陣列天線偶極天線雙極化天線圓極化雙頻天線
外文關鍵詞: Wireless LAN, Array antenna, Dipole array, Dual polarization antenna, Circular polarization, Dual band antenna.
相關次數: 點閱:259下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在點對點無線通訊的系統中,其天線通常要求高增益和高指向性的天線效能。傳統上雖可用碟形天線達到高增益和高指向性的天線需求,但是有平面結構和低姿態特性的微帶陣列天線已在多種應用上取代了體積過大的碟形天線。然而較大尺寸的微帶陣列天線,其增益效能往往受限於饋入網路上的能量耗損。一般傳統的饋入網路由許多一分二的功率分配器串接所構成,此饋入型式導致較長的分支線段和許多轉折處,造成額外耗損的累積增加。因此,本論文首先設計了一具有新型饋入方法的偶極陣列天線,其中偶極天線元件以串聯的方式互相連結,並利用雙線傳輸線來組建偶極天線的饋入網路。雖然傳送至偶極天線元件的功率並不相等,但此偶極陣列天線的饋入排列成一幾何對稱的型式,其輻射場型仍可產生於垂射方向。由量測結果顯示,相較於一般陣列的分支饋入網路,本論文所提出偶極陣列天線,由於使用簡化後的饋入網路架構,在增加陣列天線元件數量的同時,亦可維持高增益的天線效能。
    另外,本論文提出一可重置極化特性的微帶陣列天線,此天線由兩組微帶線形式的饋入網路構成。兩組微帶線饋入網路分別位於一共同接地面的上下層,可有效地避免兩組饋入網路落在同一平面上時,佈局的交錯和不便性,此饋入方法可減少能量於傳輸線上的耗損。陣列天線中的微帶天線皆由位於接地面上的兩正交槽孔所激發。一結合射頻開關的支幹耦合器連結至平板陣列天線的兩輸入端,藉由射頻開關設定,其饋入相位差可為0°、90°和180°,根據其輸入的相位差,此天線極化可為RHCP、LHCP、垂直線性極化和水平線性極化。因此本論文所提出的天線結構可達到極化多樣性,且藉由模擬和量測結果提供此天線效能的驗證。
    最後,本論文針對無線區域網路頻段提出一具有雙頻特性的陣列天線設計,分別利用槽孔陣列天線和偶極陣列天線來設計2.4 GHz和5 GHz兩頻段操作的陣列天線,並在同一空間中將兩天線結合,增加空間的利用度,且達到雙頻與高增益的輻射特性。


    Point-to-point communications requires high gain and high directivity antennas. Besides the conventional dish antenna solution, the array antenna, which has planar structure and low profile, is an usual alternative. However, the gain performance of large scale array antenna is often limited by the loss on the feeding network. A traditional feeding network comprises cascaded one-to-two power dividers, which usually results in long branches and many corners. Substantial losses are therefore accumulated. In this work, a dipole array was devised with a novel antenna feed scheme. The dipole elements are connected in a serial fashion with a straight pair wire transmission line to form a dipole branch. Although the power delivered to each dipole elements are not equal, the dipole array still yields a boresite pattern since dipole branches are arranged in a symmetric fashion. The measurement results show that due to the simple feeding structure, the proposed array antenna retains a higher gain comparing to arrays with convention branching feeds.
    A four patch array antenna with reconfigurable polarization feature is proposed in this work. The antenna comes with two sets of feeding network made of microstrip lines. Instead of awkwardly laying out two feeding networks on the same plane, they occupy the top on bottom surfaces of the ground to avoid collision. Such a feeding scheme helps reduce losses on transmission lines. Each patch antenna element is excited by two slots on the ground plane placed perpendicularly. A hybrid coupler controlled by RF switches is connected to the two feed sets. By adjusting the RF switch settings, the phase difference of two feeds can be 0, 90, or 180 degrees. According to the phase difference value, the array antenna polarization can be either RHCP, LHCP, vertical LP or horizontal LP. The proposed antenna configuration can therefore achieve polarization diversity. Performance validations are provided by simulation and measurement results.
    Finally, a dual band array antenna is presented in this work to operate in 2.4 GHz and 5 GHz bands of WLAN application. A slot array for 2.4 GHz and a dipole array for 5 GHz operation are combined in the same space to deliver dual band operation while maintaining decent isolation performance. Measurement results show high gain performance is achieved for both bands.

    目錄 摘 要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 概述 1 1.2 研究動機 3 1.3 Friis Transmission Equation 與無線區域網路 3 1.4 章節概述 5 第二章 高指向性平面印刷式偶極陣列天線 7 2.1 前言 7 2.2陣列天線之原理與分析 8 2.2.1 線性陣列天線 9 2.2.2 平面陣列天線 10 2.3 偶極陣列天線設計 12 2.3.1 偶極天線原理 12 2.3.2 偶極陣列天線設計方法 14 2.4 高指向性偶極陣列天線之實測結果與討論 19 2.5 小結 25 第三章 多極化槽孔耦合微帶陣列天線設計 27 3.1 前言 27 3.2 槽孔耦合微帶天線介紹 29 3.2.1 槽孔耦合微帶天線概述 29 3.2.2 基本槽孔耦合微帶天線設計方法 30 3.3 雙線性極化槽孔耦合微帶天線設計 33 3.3.1 天線設計概念 33 3.3.2 天線設計分析 34 3.4 雙線性極化實測結果與討論 40 3.5 雙圓極化槽孔耦合微帶陣列天線設計 49 3.5.1 圓極化之原理與設計概念 50 3.5.2 可切換之雙圓極化槽孔耦合微帶陣列天線設計 51 3.6 小結 58 第四章 雙頻且高增益陣列天線之設計 61 4.1 前言 61 4.2 雙頻陣列天線設計 62 4.2.1 槽孔天線概念與設計動機 62 4.2.2 槽孔陣列天線結合偶極陣列天線之設計分析與討論 63 4.3 雙頻陣列天線之實測與討論 68 4.4 小結 74 第五章 結論 75 參考文獻 77 附錄一 i

    參考文獻
    [1]R. Jordan, C. T. Abdallah, “Wireless communications and networking: an overview,” IEEE Antenna’s and Propagation Magazine, vol. 44, no. 1, pp. 185-193, February, 2002.
    [2]J. Bhola, Wireless LANs Demystified, McGraw-Hill, New York, 2002.
    [3]D. D. Grieg, H. F. Engelmann, “Microstrip-a new transmission technique for the kilomegacycle range,” Proc. IRE, vol. 40, pp. 1644-1650, 1952.
    [4]A. Derneryd, “A theoretical investigation of the rectangular microstrip antenna element,” IEEE Trans. Antennas and Propagation, vol. 26, pp. 532-535, July 1978.
    [5]K. R. Carver, J. W. Mink, “Microstrip antenna technology,” IEEE Trans. Antennas and Propagation, vol. 29, pp. 25-38, January 1981.
    [6]D. M. Pozar, “Microstrip antenna,” IEEE proceedings, vol. 80, pp. 79-91, 1992.
    [7]H. T. Friis, “A note on a simple transmission formula,” IEEE Proceedings IRE, vol. 34, pp. 254-256, 1946.
    [8]K. F. Tong, K. Li, T. Matsui, M. Izutsu, “Wideband coplanar waveguide fed coplanar patch antenna,” IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 406-409, July 2001.
    [9]K.-L. Wong, F.-R. Hsiao, T.-W. Chiou, “Omindirectional planar dipole array antenna,” IEEE Trans. Antennas and Propagation, vol. 52, pp. 624-628, February 2004.
    [10]C. K. Aanadan, P. Mohanan, K. G Nair, “Broad-band gap coupled microstrip antenna,” IEEE Trans. Antennas and Propagation, vol. 38, pp. 1581-86, October 1990.
    [11]W. Wilkinson, “A class of printed circuit antennas,” IEEE Antennas and Propagation Society International Symposium, vol. 12, pp. 270-273, June 1974.
    [12]E. Levine, S. Shtrikman, D. Treves, “Double-sided printed arrays with large bandwidth,” IEE Proceedings H, vol. 135, Pt. H, no. 1, pp. 54-59, February 1988.
    [13]B. G. Duffley, G. A. Morin, M. Mikavica, Y. M. M. Antar “A wide-band printed double-sided dipole array,” IEEE Trans. Antennas and Propagation, vol. 52, no. 2, pp. 628-631, February 2004.
    [14]M. C. Bailey, “Broad-band half-wave dipole,” IEEE Trans. Antennas and Propagation, vol. 32, no. 4, pp. 410-412, April 1984.
    [15]J.-F. Huang, M.-H. Hsu, J.-W. Liang “Wideband printed and double-sided dipole pair antennas with a parallel reflector,” IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, vol. 2, pp. 1635-38, 2005.
    [16]H. Wheeler, “Transmission line properties of parallel strips separated by a dielectrics sheet,” IEEE Trans. Microwave Theory Tech., vol. 13, no. 2, pp. 172-185, March 1965.
    [17]W. L. Stuzman, G. A. Thiele, Antenna Theory and Design, 2nd Ed. New York, Wiley, 1998.
    [18]C. A. Balanis, Antenna Theory Analysis And Design, New York, John Wiley & Sons, 1997.
    [19]D. M. Pozar, Microwave Engineering, 3nd Ed. New York, John Wiley & Sons, 2005.
    [20]S.-G. Kim, K. Chang, “Ultrawide-band transitions and new microwave components double-sided parallel-strip lines,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 9, pp. 2148-2152, September 2004.
    [21]P. S. Hall, “Dual polarization antenna arrays with sequentially rotated feeding,” IEE Proceedings H, vol. 139, no. 5, pp. 465-471, October 1992.
    [22]S.-C. Gao, S.-S. Zhong, “A dual-polarized microstrip antenna array with high isolation fed by coplanar network,” IEEE Radio and Wireless Conference, pp. 213-216, 1998.
    [23]T. Condello, C. Pexixeiro, “Dual band dual polarisation slotted microstrip patch antenna element,” IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 70-73, 2001.
    [24]H. Nakano, N. Suzuki, T. Ishii, J. Yamauchi, “Mesh antennas for dual polarization,” IEEE Trans. Antennas and Propagation, vol. 49, no. 5, pp. 715-723, May 2001.
    [25]D. G. Kurup, A. Rydberg, M. Himdi, “Compact microstrip-T coupled patch antenna for dual polarization and active antenna applications,” Electron. Lett., vol. 38, pp. 1240-1241, October 2002.
    [26]K.-M. Mak, H. Wong, K.-M. Luk, “A shorted bowtie patch antenna with a cross dipole for dual polarization,” IEEE Antennas And Wireless Propagation Lett., vol. 6, pp. 126-129, 2007.
    [27]K. L. Lau, K. M. Luk, “A wideband dual-polarized L-probe stacked patch antenna array,” IEEE Antennas And Wireless Propagation Lett., vol. 6, pp. 529-532, 2007.
    [28]C. H. Tsao, Y. M. Hwang, F. Kilburg, F. Dietrich “Aperture-coupled patch antennas with wide-bandwidth and dual-polarization capabilities,” IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 936-939, 1988.
    [29]D. M. Pozar, “Microstrip antenna aperture coupled to a microstrip line,” Electron. Lett., vol. 21, pp. 49-50, January 1985.
    [30]P. L. Sullivan, D. H. Schaubert, “Analysis of an aperture coupled microstrip antenna,” IEEE Trans. Antennas and Propagation, vol. 34, pp. 977-984, August 1986.
    [31]D. M. Pozar, A review of aperture coupled microstrip antennas: History, Operation, Development, and Applications. May 1996.
    [32]F. Rostan, E. Heidrich, W. Wiesbeck, “Design of aperture-coupled patch antenna arrays with multiple dielectric layers,” European Microwave Conference, pp. 917-919, October 1993.
    [33]L. Habib, G. Kossiavas, A. Papiernik, “Cross-shaped patch with etched bars for dual polarization,” Electron. Lett., vol. 29, pp. 916-918, May 1993.
    [34]M. Yamazaki, E. T. Rahardjo, M. Haneishi, “Construction of a slot-coupled planar antenna for dual polarization,” Electron. Lett., vol. 30, no. 22, pp. 1814-1815, October 1994.
    [35]F. Rostan, W. Wiesbeck, “Design considerations for dual polarized aperture-coupled microstrip patch antennas,” IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 2086-2089, 1995.
    [36]R. R. Ramirez, F. De Franco, “Triangular microstrip patch antennas for dual mode 802.11a,b WLAN application,” IEEE Antennas and Propagation Society International Symposium, vol. 4, pp. 44-47, 2002.
    [37]D. Lin, B. Gaucher, “A dualband WLAN access point antenna,” IEEE Antennas, Propagation and EM Theory, vol. 28, pp. 323-326, 2003.
    [38]H. Okado, “A 2.4 and 5 GHz dual band antenna,” IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 2596-2598, 2004.
    [39]S. H. Hwang, J. I. Moon, W. I. Kwak, S. O. Park, “Printed compact dual band antenna for 2.4 and 2.5 GHz ISM band applications,” Electron. Lett., vol. 40, no. 25, pp. 1568-69, December 2004.
    [40]D. Lin, B. Gaucher, Thomas Hildner, “A dualband antenna for WLAN application,” IEEE Antenna Technology: Small Antennas and Novel Metamaterials, 2005, IWAT, pp.201-204, 2005.
    [41]S. B. Cohn, “Slot line on a dielectric substrate,” IEEE Trans. Microwave Theory Tech., vol. 17, no. 10, pp. 768-778, October 1969.
    [42]E. A. Mariani, C. P. Heinzman, J. P. Agrios, S. B. Cohn, “Slot line characteristics,” IEEE Trans. Microwave Theory Tech., vol. 17, no. 12, pp. 1091-1096, December 1969.
    [43]M. Kominami, D. M. Pozar, D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antennas and Propagation, vol. 33, no. 6, pp. 600-607, June 1985.
    [44]J. D. Kraus, Antennas, 2nd Ed. McGraw Hill, 1988.
    [45]R. W. Breithaupt, “Conductance data for offset series slots in stripline,” IEEE Trans. Microwave Theory Tech., vol. 16, no. 11, pp. 969-970, November 1968.
    [46]Y. Yoshimura, “A microstripline slot antenna,” IEEE Trans. Microwave Theory Tech., vol. 20, no. 11, pp. 760-762, November 1972.
    [47]W. E. McKinzie III, J. J. Moncada, T. L. Anderson, “A microstrip-fed log-periodic slot array,” IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 1278-1281, 1994.
    [48]J.-S. Chan, “Dual-frequency annular-ring slot antennas fed by CPW feed and microstrip line feed,” IEEE Trans. Antennas and Propagation, vol. 53, no. 1, pp. 569-571, January 2005.

    QR CODE