簡易檢索 / 詳目顯示

研究生: 王鈞奕
Jyun-Yi Wang
論文名稱: 一種具有標靶性化療功能的次微米藥物載體粒子製劑的開發與其在肝癌治療上的應用與改良
Development and application of micro polysaccharide drug carriers for targeting treatment of Hepatocellular Carcinoma
指導教授: 白孟宜
Meng-yi Bai
口試委員: 許維君
Wei-chun Hsu
陳榮邦
Wing-pang Chan
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 139
中文關鍵詞: 幾丁聚醣硫酸軟骨素阿黴素藥物載體系統靜電噴霧技術次微米顆粒/粒子副作用腫瘤
外文關鍵詞: Chitosan, Chondroitin sulfate, Doxorubicin, Drug delivery systems, Electrospray, Microparticles, Side effects, Tumor
相關次數: 點閱:385下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究闡述如何使用硫酸軟骨素 (Chondroitin sulfate)及幾丁聚醣 (Chitosan)作為基材,透過靜電噴霧技術 (Electrospray technique)包覆化療用藥-阿黴素 (Doxorubicin),以及超順磁氧化鐵 (Superparamagnetic iron oxide),製備形成新型次微米等級之藥物載體粒子 (Drug delivery systems)之實驗方法。研究探討材料特性、體外釋放試驗、體外抗腫瘤試驗,以及活體動物模式之成效。結果顯示,此DOX-SPIO-CS/CHI 次微米粒子之平均粒徑為110.7 nm (SD = 30.23),針對Doxorubicin之包覆率約為31% (SD = 8.07),並具備緩慢釋放之特性及人類癌細胞株之體外試驗阻殺效果。在實際投藥劑量為0.06, 0.12, 0.25 nM之條件下,DOX-SPIO-CS/CHI MPs懸浮藥劑針對Hep G2之肝癌細胞存活率試驗結果分別為0.06 nM: 20.5%, 0.12 nM: 4.6%, 0.25 nM: 6.3%,DOX溶液則為0.06 nM: 70.7%, 0.12 nM: 49.9%, 0.25 nM: 21.3%;針對Huh-6之肝癌細胞存活率試驗結果分別為0.06 nM: 52.2%, 0.12 nM: 12.8%, 0.25 nM: 23.4%,DOX溶液則為0.06 nM: 71.9%, 0.12 nM: 62.5%, 0.25 nM: 43.9%。動物實驗結果顯示,針對Hep G2試驗別治療後,Exp.試驗組以68.6%之腫瘤抑制效果優於P.C.試驗組之50.8%;針對Huh-6試驗別治療後,Exp.試驗組以40%之腫瘤抑制效果優於P.C.試驗組之36.5%。此外,在兩個動物試驗別,結果皆顯示使用DOX-SPIO-CS/CHI MPs懸浮藥劑進行治療而造成較少之體重流失 (Hep G2: Exp.= -0.59%, P.C.= -5.88%; Huh-6: Exp.= +10.93%, P.C.= -0.78%)。


In this study, we describes we synthesized a novel polyelectrolyte micorparticle, DOX-SPIO-CS/CHI MPs, as drug delivery systems (DDS) for hepatic cancer treatment. Also, we investigated the properties of these micropar-ticles, from material characterizations, formulation tests, in vitro study to in vivo study. The results show that our DOX-SPIO-CS/CHI MPs displays an average diameter of 110.7 nm (SD = 30.23), and reveals a spherical shape. The encapsu-lation efficiency of doxorubicin is about 31% (SD = 8.07) based on our spec-trometer measurement. In the results of release profile test, we found a sus-tained-release behavior of DOX-SPIO-CS/CHI MPs, which released 51.5% of DOX within 48 h of testing time. Based on the results of cell viability assay and animal study, the DOX-SPIO-CS/CHI MPs was found to show stronger ability than that of free DOX, when given to Hep G2 and Huh-6 human liver cancer cell line for treatment and nude mice of Hep G2/Huh-6-induced tumor model.

摘要 I Abstract II 誌謝 III 目錄 V 表目錄 IX 公式目錄 IX 圖目錄 X 縮寫對照表 XII 第1章 緒論 1 1.1 肝癌與抗癌藥物 2 1.1.1 肝癌 2 1.1.2 肝癌治療法 2 1.2 生醫材料簡介 8 1.2.1 天然高分子 8 1.2.2 幾丁聚醣 9 1.2.3 硫酸軟骨素 10 1.2.4 超順磁氧化鐵 11 1.3 研究背景與實驗設計 13 1.3.1 研究動機與目的 13 1.3.2 實驗設計與流程 15 第2章 實驗技術、材料與方法學 17 2.1 實驗藥品、儀器與設備 18 2.1.1 實驗藥品 18 2.1.1.1 實驗藥品及試劑 18 2.1.1.2 細胞培養試劑 19 2.1.2 實驗儀器與設備 19 2.1.2.1 製備儀器 19 2.1.2.2 分析儀器 20 2.1.2.3 細胞實驗儀器 21 2.1.2.4 實驗器械 23 2.1.2.5 實驗數據分析軟體 23 2.1.3 靜電噴霧技術於生醫技術之簡介 25 2.1.4 DOX-SPIO-CS/CHI次微米顆粒之製備方法 27 2.1.4.1利用電噴霧技術製備DOX-SPIO-CS/CHI次微米顆粒之方法 27 2.1.4.2 DOX-SPIO-CS/CHI次微米顆粒之評估方法 30 2.1.4.2.1 化學官能基組成分析–FT-IR分析之方法 30 2.1.4.2.2 顆粒型態分析- SEM/FESEM分析之方法 30 2.1.4.2.3 元素組成份分析- EDS分析之方法 31 2.1.4.2.4 元素組成份分析- XPS分析之方法 32 2.2 細胞株 34 2.2.1 細胞種類 34 2.2.2 細胞培養基配製 35 2.2.3 細胞培養方法 35 2.2.4 細胞計數方法 36 2.2.5 細胞冷凍保存之方法 37 2.2.6 冷凍細胞活化之方法 38 2.3 Doxorubicin藥物包覆率計算 39 2.4 DOX-SPIO-CS/CHI次微米顆粒之體外釋放曲線 41 2.5 體外細胞模式抗腫瘤療效試驗 42 2.6 活體動物模式抗腫瘤成效評估 45 2.6.1 動物品系 45 2.6.2 動物飼養環境 45 2.6.3 動物腫瘤接種誘導之方法 45 2.6.4 動物給藥型式及治療之方法 46 2.6.5 治療中之腫瘤體積、體重、進食多寡觀察之方法 47 2.7 器官及腫瘤病理組織之評估方法 49 第3章 實驗結果與討論 50 3.1 DOX-SPIO-CS/CHI次微米顆粒之結構圖譜鑑定與性質分析之結果 51 3.1.1 FT-IR結果分析與討論 51 3.1.2 顆粒型態分析-SEM與FESEM分析之結果 52 3.1.3 EDS結果分析與討論 53 3.1.4 XPS結果分析與討論 55 3.2 Doxorubicin藥物包覆率計算 57 3.3 DOX-SPIO-CS/CHI次微米顆粒之體外釋放曲線測試與分析 58 3.4 體外細胞模式抗腫瘤療效試驗評估 59 3.5 活體動物模式抗腫瘤成效試驗結果與評估 61 3.5.1 動物腫瘤接種誘導之結果 61 3.5.2 實際治療中之腫瘤大小、體重、飲食多寡觀察之結果 62 3.5.2.1 實際治療中之腫瘤大小觀察之結果 63 3.5.2.2 實際治療中之體重觀察之結果 64 3.5.2.3 實際治療中之飲食多寡觀察之結果 65 3.5.3 實際終點腫瘤大小觀察統計之結果 66 3.5.4 活體動物模式抗腫瘤成效試驗之綜合討論 67 第4章 結論 70 第5章 未來展望 73 第6章 參考文獻 75 表圖集 83 附錄 123 附錄 1 動物實驗申請計劃書 124 附錄 2 動物操作受訓證明 126 附錄 3 肝癌細胞株之黴漿菌 (Mycoplasma)檢測結果 127 附錄 4 動物實驗之腫瘤成長紀錄 128 附錄 5 動物實驗之體重變化紀錄 132 附錄 6 動物實驗之平均進食量變化紀錄 136

1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
2. Raza, A. and G.K. Sood, Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol, 2014. 20(15): p. 4115-27.
3. Klein, J. and L.A. Dawson, Hepatocellular carcinoma radiation therapy: review of evidence and future opportunities. Int J Radiat Oncol Biol Phys, 2013. 87(1): p. 22-32.
4. H.T.et al., Liver Cancer and its Prevention. Asian Pacific J Cancer Prev, 2005. 6: p. 244-250.
5. Minotti, G., et al., Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev, 2004. 56(2): p. 185-229.
6. Cutts, S.M., et al., The power and potential of doxorubicin-DNA adducts. IUBMB Life, 2005. 57(2): p. 73-81.
7. Chlebowski, R.T., et al., Influence of nandrolone decanoate on weight loss in advanced non-small cell lung cancer. Cancer, 1986. 58(1): p. 183-6.
8. Tacar, O., P. Sriamornsak, and C.R. Dass, Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol, 2013. 65(2): p. 157-70.
9. Strother, R. and D. Matei, Pegylated liposomal doxorubicin in ovarian cancer. Ther Clin Risk Manag, 2009. 5(3): p. 639-50.
10. Kiviharju, K., M. Leisola, and T. Eerikainen, Optimization of Streptomyces peucetius var. caesius N47 cultivation and epsilon-rhodomycinone production using experimental designs and response surface methods. J Ind Microbiol Biotechnol, 2004. 31(10): p. 475-81.
11. Tsoneva, Y., et al., Molecular structure and pronounced conformational flexibility of doxorubicin in free and conjugated state within a drug-peptide compound. J Phys Chem B, 2015. 119(7): p. 3001-13.
12. Bagheri, S., S.M. Hassani, and G. Naderi, Theoretical study on physicochemical and geometrical properties of Doxorubicin and Daunorubicin conjugated to PEO-b-PCL nanoparticles. Euro. J. Exp. Bio, 2012. 2(3): p. 641-645.
13. Alakhova, D.Y., et al., Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia. PLoS One, 2013. 8(8): p. e72238.
14. Yokochi, T. and K.D. Robertson, Doxorubicin inhibits DNMT1, resulting in conditional apoptosis. Mol Pharmacol, 2004. 66(6): p. 1415-20.
15. Dejeux, E., et al., RDesNearAch methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Dejeux et al. Molecular Cancer 2010, 9:68, 2010. 9: p. 68-80.
16. Kumar, S., et al., Doxorubicin-Induced Cardiomyopathy 17 Years after Chemotherapy. Texas Heart Institute Journal, 2012. 39(3): p. 424-427.
17. Octavia, Y., et al., Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol, 2012. 52(6): p. 1213-25.
18. Chatterjee, K., et al., Doxorubicin cardiomyopathy. Cardiology, 2010. 115(2): p. 155-62.
19. Branco, A.F., et al., Differentiation-dependent doxorubicin toxicity on H9c2 cardiomyoblasts. Cardiovasc Toxicol, 2012. 12(4): p. 326-40.
20. Smola, M., T. Vandamme, and A. Sokolowski, Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. International Journal of Nanomedicine, 2008. 3(1): p. 1-19.
21. Naidu, M.U., et al., Chemotherapy-induced and/or radiation therapy-induced oral mucositis--complicating the treatment of cancer. Neoplasia, 2004. 6(5): p. 423-31.
22. Sol Silverman, J., Diagnosis and Management of Oral Mucositis. J Support Oncol, 2007. 5: p. 013-021.
23. Ross, P.J., et al., Do patients with weight loss have a worse outcome when undergoing chemotherapy for lung cancers? Br J Cancer, 2004. 90(10): p. 1905-11.
24. Petruson, K.M., E.M. Silander, and E.B. Hammerlid, Quality of life as predictor of weight loss in patients with head and neck cancer. Head Neck, 2005. 27(4): p. 302-10.
25. Maeng, J.H., et al., Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 2010. 31(18): p. 4995-5006.
26. Yeh, M.K., et al., Novel protein-loaded chondroitin sulfate-chitosan nanoparticles: preparation and characterization. Acta Biomater, 2011. 7(10): p. 3804-12.
27. Hu, C.S., et al., Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers. Int J Nanomedicine, 2012. 7: p. 4861-72.
28. Xiao, K., et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011. 32(13): p. 3435-46.
29. He, C., et al., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010. 31(13): p. 3657-66.
30. Yamamoto, Y., et al., Long-circulating poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles with modulated surface charge. Journal of Controlled Release, 2001. 77: p. 27-38.
31. Tsai, H.Y., et al., Antitumor efficacy of doxorubicin released from crosslinked nanoparticulate chondroitin sulfate/chitosan polyelectrolyte complexes. Macromol Biosci, 2011. 11(5): p. 680-8.
32. S, K.V., B.K.D. , and R.S. S, Natural Polymers – A Comprehensive Review. J Pharm Biomed Sci., 2012. 3(4): p. 1597-1613.
33. A. P. Anwunobi, M.O.E., Recent Applications of Natural Polymers in Nanodrug Delivery. Journal of Nanomedicine & Nanotechnology, 2011. s4(01).
34. Golla, K., et al., Biocompatibility, absorption and safety of protein nanoparticle-based delivery of doxorubicin through oral administration in rats. Drug Deliv, 2013. 20(3-4): p. 156-67.
35. Henrotin, Y., et al., Chondroitin sulfate in the treatment of osteoarthritis: from in vitro studies to clinical recommendations. Ther Adv Musculoskelet Dis, 2010. 2(6): p. 335-48.
36. Giri, T.K., et al., Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharmaceutica Sinica B, 2012. 2(5): p. 439-449.
37. Bhattarai, N., J. Gunn, and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev, 2010. 62(1): p. 83-99.
38. Marei, M.K., et al., Principles, Applications, and Technology of Craniofacial Bone Engineering, in Integrated Biomaterials in Tissue Engineering. 2012, John Wiley & Sons, Inc. p. 183-234.
39. Zhao, L., et al., Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate-chitosan-biodegradable fiber scaffolds. Biomaterials, 2010. 31(5): p. 840-7.
40. VandeVord, P.J., et al., Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res, 2002. 59(3): p. 585-90.
41. Elena Udrea, L., et al., Preparation and characterization of polyvinyl alcohol—chitosan biocompatible magnetic microparticles. Journal of Magnetism and Magnetic Materials, 2011. 323(1): p. 7-13.
42. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006. 31(7): p. 603-632.
43. Vivek, R., et al., Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a "smart" drug delivery system to breast cancer cell therapy. Int J Biol Macromol, 2014. 65: p. 289-97.
44. Jain, N., et al., Lactosaminated-N-succinyl chitosan nanoparticles for hepatocyte-targeted delivery of acyclovir. Journal of Nanoparticle Research, 2013. 16(1).
45. Bei, Y.Y., et al., Novel self-assembled micelles based on palmitoyl-trimethyl-chitosan for efficient delivery of harmine to liver cancer. Expert Opin Drug Deliv, 2014. 11(6): p. 843-54.
46. Clegg, D.O., et al., Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med, 2006. 354(8): p. 795-808.
47. Zhao, Q., et al., Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics, 2012. 2: p. 113-21.
48. Kim, M.H., et al., Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng, 2013. 41(3): p. 598-609.
49. Wang, Y.X., S.M. Hussain, and G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol, 2001. 11(11): p. 2319-31.
50. Wang, Y.X., Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg, 2011. 1(1): p. 35-40.
51. Yu, M.K., et al., Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl, 2008. 47(29): p. 5362-5.
52. Thorek, D.L., et al., Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng, 2006. 34(1): p. 23-38.
53. Cloupeau, M. and B. Prunetfoch, Electrohydrodynamic Spraying Functioning Modes - a Critical-Review. Journal of Aerosol Science, 1994. 25(6): p. 1021-1036.
54. Xu, Y. and M.A. Hanna, Electrospray encapsulation of water-soluble protein with polylactide. Effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm, 2006. 320(1-2): p. 30-6.
55. Valo, H., et al., Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(L-lactic acid) nanoparticles. Small, 2009. 5(15): p. 1791-8.
56. Hong, Y.L., et al., Electrohydrodynamic atomization of quasi-monodisperse drug-loaded spherical/wrinkled microparticles. Journal of Aerosol Science, 2008. 39(6): p. 525-536.
57. Gaskell, S.J., Electrospray- Principles and Practice. J. Mass Spectrom, 1997. 32: p. 677-688.
58. Seo, H., et al., Preparation of polysaccharide nanofiber fabrics by electrospray deposition: Additive effects of poly(ethylene oxide). Polymer Journal, 2005. 37(6): p. 391-398.
59. Lee, Y.H., et al., Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release, 2010. 145(1): p. 58-65.
60. Lee, Y.H., M.Y. Bai, and D.R. Chen, Multidrug encapsulation by coaxial tri-capillary electrospray. Colloids Surf B Biointerfaces, 2011. 82(1): p. 104-10.
61. Jayasinghe, S.N. and A. Townsend-Nicholson, Stable electric-field driven cone-jetting of concentrated biosuspensions. Lab Chip, 2006. 6(8): p. 1086-90.
62. Kien Nguyen, T., et al., Control and improvement of jet stability by monitoring liquid meniscus in electrospray and electrohydrodynamic jet. Journal of Aerosol Science, 2014. 71: p. 29-39.
63. Yin, H., L. Liao, and J. Fang, Enhanced Permeability and Retention (EPR) Effect Based Tumor Targeting: The Concept, Application and Prospect. JSM Clin Oncol Res, 2014. 2(1): p. 1010-1014.
64. Ahmed, F., et al., Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release, 2006. 116(2): p. 150-8.
65. Fouad, A.A., et al., Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ Toxicol Pharmacol, 2013. 36(2): p. 347-57.
66. Ravasco, P., I. Monteiro Grillo, and M. Camilo, Cancer wasting and quality of life react to early individualized nutritional counselling! Clin Nutr, 2007. 26(1): p. 7-15.
67. Van Cutsem, E. and J. Arends, The causes and consequences of cancer-associated malnutrition. Eur J Oncol Nurs, 2005. 9 Suppl 2: p. S51-63.
68. Introduction to Energy Dispersive X-ray Spectrometry (EDS).
69. Ai, W., et al., A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. Sci Rep, 2013. 3: p. 2341.
70. Louis, K.S. and A.C. Siegel, Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol, 2011. 740: p. 7-12.
71. Swinehart, D.F., The Beer-Lambert Law. J. Chem. Educ., 1962. 39 (7): p. 333-335.
72. Terry L Riss, P., et al., Assay Guidance Manual: Cell Viability Assays. Assay Guidance Manual, 2013: p. 1-23.
73. Morton, C.L. and P.J. Houghton, Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc, 2007. 2(2): p. 247-50.
74. Jensen, M.M., et al., Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging, 2008. 8: p. 16.
75. Dey, S., S. Pramanik, and A. Malgope, Formulation and optimization of sustained release Stavudine microspheres using response surface methodology. ISRN Pharm, 2011. 2011: p. 627623.
76. Ramasamy, T., et al., Formulation and evaluation of chondroitin sulphate tablets of aceclofenac for colon targeted drug delivery. Iran J Pharm Res, 2012. 11(2): p. 465-79.
77. Kumirska, J., et al., Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs, 2010. 8(5): p. 1567-636.
78. Zangi, R. and B.J. Berne, Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J Phys Chem B, 2006. 110(45): p. 22736-41.
79. Desset, S., O. Spalla, and B. Cabane, Redispersion of alumina particles in water. Langmuir, 2000. 16(26): p. 10495-10508.
80. Nguyen, T.H., et al., Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release, 2011. 153(2): p. 180-6.
81. Benachour, N., et al., Time- and dose-dependent effects of roundup on human embryonic and placental cells. Arch Environ Contam Toxicol, 2007. 53(1): p. 126-33.
82. von Meyenfeldt, M., Cancer-associated malnutrition: an introduction. Eur J Oncol Nurs, 2005. 9 Suppl 2: p. S35-8.
83. Donohoe, C.L., A.M. Ryan, and J.V. Reynolds, Cancer cachexia: mechanisms and clinical implications. Gastroenterol Res Pract, 2011. 2011: p. 601434.
84. Chen, Z.C., L.J. Chen, and J.T. Cheng, Doxorubicin-Induced Cardiac Toxicity Is Mediated by Lowering of Peroxisome Proliferator-Activated Receptor delta Expression in Rats. PPAR Res, 2013. 2013: p. 456042.
85. MJ., T., Mechanisms of Cancer Cachexia. Physiol Rev, 2009. 89: p. 381-410.
86. Bosaeus, I., et al., Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer, 2001. 93(3): p. 380-3.

無法下載圖示 全文公開日期 2020/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE