簡易檢索 / 詳目顯示

研究生: 陳俞均
Yu-Jyun Chen
論文名稱: 二氧化鈦奈米管披覆奈米石墨烯之應用研究
The application of TiO2 nanotubes coated with graphene nanostructure
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 葉秉慧
Pinghui-Sophia Yeh
郭鴻飛
Hung-fei Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 125
中文關鍵詞: 二氧化鈦陽極氧化場發射氣體感測
外文關鍵詞: TiO2, anodization, field emission, gas sensor
相關次數: 點閱:359下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係利用陽極氧化法製備出二氧化鈦奈米管陣列(TNA),在室溫下以含氟的EG/H2O電解液中,利用陽極氧化法在純鈦表面製備了規則有序的TiO2奈米管陣列。
本實驗結果發現,平坦型的二氧化鈦奈米管陣列不具有場發之效應,可能是由於高密度的TiO2奈米管之間具有較高的屏蔽效應,降低了TiO2奈米管陣列的增強因子,從而影響了場發射的性能。但經過H2O2處理後,使二氧化鈦奈米管陣列形成聚集之形貌,場發射起始電場有明顯的提升。另一方面,石墨烯奈米帶有(約5 eV)的功函數,根據相關的研究,它可以減少二氧化鈦表面電子電洞對的複合,有利於提高場發射的性能。
而在氣體感測中,經過H2O2處理過之聚集型的二氧化鈦奈米管陣列(A-TNA)具有更多的比表面積及更多的氧缺陷,有利於提升對氫氣的感測能力,其氣體感測器顯示了有更高的響應(510%)比起平坦型的二氧化鈦奈米管陣列(P-TNA)感測器(454%)。


In this work, the TiO2 nanotube arrays (TNA) were synthesized in a NH4F/ethylene glycol (EG) electrolyte by using anodization method with operating voltages at room temperature. The plane TiO2 nanotube without field emission properties due to the higher density between TiO2 nanotubes to cause the large electric field screen effect.
Aggregated TiO2 nanotube arrays (A-TNA) were formed H2O2 post-treatment, which effective improve the field emission properties. On the other hand, graphene have a work function close to (∼5 eV), it can be reduced the electro-hole combination in the A-TNA. However, it is favorable for improving the performance of field emission.
In resulting, A-TNA possesses the higher surface area and more oxygen defects which is beneficial for the hydrogen gas sensing. The A-TNA gas sensor shows the higher response (510 %) than response of the TNA sensor (454 %) without H2O2 post-treatment.

中文摘要 I 英文摘要 III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 二氧化鈦概述 7 2.2二氧化鈦製備方法 16 2.3鈦金屬陽極氧化 16 2.3.1陽極氧化法簡介 16 2.3.2陽極處理與奈米管反應機制 16 2.4石墨烯奈米帶簡介與製備 19 2.5氫氣感測器簡介 21 2.5.1二氧化鈦氫氣感測 23 2.5.2氫氣吸附機制 24 2.6電子場發射理論 25 第三章 實驗方法 27 3.1材料與藥品 27 3.2實驗設計與流程 28 3.3二氧化鈦奈米管之製備 30 3.3.1基板前處理 30 3.3.2電解液之調配 31 3.3.3平坦型之二氧化鈦奈米管結構 31 3.3.4聚集型之二氧化鈦奈米管結構 33 3.3.5平坦型之二氧化鈦奈米管/奈米石墨烯複合結構 34 3.3.6聚集型之二氧化鈦奈米管/奈米石墨烯複合結構 35 3.3.7氣體感測之量測流程 37 3.3.8場發射量測之流程 38 3.4儀器及分析設備 39 3.4.1高真空與場發射量測系統 39 3.4.2微波電漿化學氣相沉積(Microwave Plasma,MPCVD) 39 3.4.3場發射掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 41 3.4.4 X-ray繞射儀 (X-ray diffractometer, XRD) 42 3.4.5傅立葉紅外線光譜儀 (Fourier Transform Infrared spectrometer, FTIR) 44 3.4.6拉曼光譜分析 (Raman Spectroscopy) 45 3.4.7光激發螢光頻譜儀(Photoluminescence,PL) 46 第四章 結果與討論 47 4.1陽極氧化之時間影響 47 4.2燒結溫度之影響 47 4.3平坦型之二氧化鈦奈米管結構 52 4.3.1奈米管結構分析 52 4.3.2場發射之特性 60 4.4聚集型之二氧化鈦奈米管結構 61 4.4.1奈米管結構分析 61 4.4.2場發射之特性 70 4.5聚集型之二氧化鈦奈米管/奈米石墨烯複合結構 72 4.5.1奈米管結構分析 72 4.5.2場發射之特性 80 4.6氫電漿後處理聚集型二氧化鈦奈米管結構 84 4.6.1奈米管結構分析 84 4.6.2場發射之特性 89 4.7氫電漿後處理聚集型二氧化鈦奈米管/石墨烯奈米帶複合結構 92 4.7.1奈米管結構分析 92 4.7.2場發射之特性 97 4.8平坦型之二氧化鈦奈米管及複合結構氣體感測特性 101 4.8.1平坦型之二氧化鈦奈米管 101 4.8.2平坦型之二氧化鈦奈米管/奈米石墨烯 103 4.9聚集型之二氧化鈦奈米管及複合結構氣體感測特性 110 4.9.1 聚集型之二氧化鈦奈米管 110 4.9.2 聚集型之二氧化鈦奈米管/奈米石墨烯 113 第五章 結論與未來展望 115 5.1 結論 115 5.2 未來展望 116 參考文獻 117

[1] Ana Primo, Avelino Corma and Hermenegildo Garcı’a, “Titania supported gold
nanoparticles as photocatalyst”, Phys. Chem. Chem. Phys., 13, pp. 886-910,
2011.
[2] Ulrike Diebold, “The surface science of titanium dioxide”, Surface Science
Reports 48, pp. 53-229, 2003.
[3] 裴潤等編﹕《硫酸法鈦白生產》﹐化學工業出版社﹐北京﹐1982。
[4] N.B.利斯庚著﹐曹惠民譯﹕《鈦白》﹐中國工業出版社﹐北京﹐1963。
[5] J.Barksdale﹐Titanium﹐Its Occurrence﹐Chemistry and Technology﹐2nd ed.﹐Ronald
Press Co.﹐New York﹐1966.
[6] C. J. Brinker and G. W. Scherer, Sol-Gel Science - The Physics and Chemistry
of Sol-Gel Processing, New York, Academic Press, 1990.
[7] 陳琦麗,唐超群,肖循.TiO2奈米微粒的溶膠-凝膠法製備及XRD分析[J].材料科學與工程, 20(2),
pp. 224-226, 2002.
[8] 張朝平,黃毅,申德君,等.溶膠-微乳液化學剪裁製備TiO2奈米顆粒[J].稀有金屬, 26(4), pp. 257-
261, 2002.
[9] 盧旭晨,徐廷獻. 溶膠-凝膠法及其應用[J]. 陶瓷學報, 19, 53-57, 1998.
[10] Tomoko Kasuga,* Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino, and Koichi
Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater.,
15, 1999.
[11] Patrick Hoyer, “Formation of a Titanium Dioxide Nanotube Array”, Langmuir,
12, pp. 1411-1413, 1996.
[12] Hiroaki Imai, Yuko Takei, Kazuhiko Shimizu, Manabu Matsuda and Hiroshi
Hirashima, “Direct preparation of anatase TiO2 nanotubes in porous alumina
membranes”, J. Mater. Chem., 9, pp. 2971-2972, 1999.
[13] V. Zwilling,1 E. Darque-Ceretti,1,* A. Boutry-Forveille,2 D. David,3 M. Y.
Perrin1 and M. Aucouturier4, “Structure and Physicochemistry of Anodic
OxideFilms on Titanium and TA6V Alloy”, Surf. Interface Anal. 27, pp. 629-
637,1999.
[14] Karla S. Brammer 1 , Seunghan Oh 2 , Christine J. Frandsen 1 and Sungho
Jin 1, “Biomaterials and Biotechnology Schemes Utilizing TiO2 Nanotube
Arrays”, Biomaterials Science and Engineering.
[15] Jinliang Tao, Jianling Zhao, Chengcun Tang, Yingru Kang and Yangxian Li*,
“Mechanism study of self-organized TiO2 nanotube arrays by anodization.”,
New J. Chem., 32, pp. 2164-2168, 2008.
[16] 張景棠, “微波輔助合成石墨烯奈米帶於電化學生物感測器的應用”, 長庚大學化工暨材料工程研究所碩
士論文, 2012.
[17] Nakada, K., Fujita, M., Dresselhaus,G., Dresselhaus, M. S. “Edge state in
graphene ribbons: Nanometer size effect and edge shape dependence”, Phys.
Rev. B, 54, pp. 17954-17961, 1996.
[18] Campos-Delgado, J., Romo-Herrera, J. M., Jia, X., Cullen, D. A.; Muramatsu
, H., Kim,Y. A., Hayashi,T., Ren, Z., Smith, D. J., Okuno, Y. et al., “Bulk
Production of a New Form of sp2 Carbon: Crystalline Graphene Nanoribbons”,
Nano Lett., 8, pp. 2773-2778, 2008.
[19] Cancado, L.G., Pimenta, M.A., Neves, B.R.A., Dantas, M.S., Jorio, S. A.
“Influence of the Atomic Structure on the Raman Spectra of Graphite Edges”,
Phys. Rev. Lett., 93, pp. 247401, 2004.
[20] Ferrari, A. C., Meyer, J. C.; Scardaci, V., Casiraghi, C., Lazzeri, M.,
Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, A.
K., “Raman Spectrum of Graphene and Graphene Layers“, Phys. Rev. Lett., 97,
p. 187401, 2006.
[21] Rycerz, A., Tworzydło, J., Beenakker, C. W. J., “Valley filter and valley
valve in grapheme”, Nat. Phys., 3, p. 172, 2007.
[22] Cresti, A., Roche, S., “Edge-disorder-dependent transport length scales in
graphene nanoribbons: From Klein defects to the superlattice limit”, Phys.
Rev. B, 79, p. 233404, 2009.
[23] Heersche, H. B., Jarillo-Herrero, P., Oostinga, J.B., Vandersypen, L. M.
K., Morpurgo, A. F., “Bipolar supercurrent in graphene.“, Nature, 446, p.
7131, 2007.
[22] Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev,
A., Price1, B. K., Tour, J. M., “Longitudinal unzipping of carbon nanotubes
to form graphene nanoribbons.“ Nature , 458, p. 16, 2009.
[23] Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., “Narrow grapheme
nanoribbons from carbon nanotuves”, Nature, 458, pp. 877–880, 2009
[24] Abraham, G., Cano, M.; Fernando, J., Rodriguez, M., Jessica, C. D.,
Claudia, G., Espinosa, G., Ferdinando, T. L., Daniel, R. G., Cullen, D.
A.et al., “Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium
Intercalation and Exfoliation of Carbon Nanotubes“, Nano Lett., 9, p. 1527,
2009.
[25] Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F.; Kelly, K. F., Yakobson, B. I.,
Ajayan, “Controlled Nanocutting of Graphene”, P. M. Nano Res., 1, pp. 116-
112, 2008.
[26] Kim, K., Sussman, A.; Zettl, A. ACSNano., 4, pp. 1362-1366, 2010.
[27] Wu, Z. S., Ren, W., Gao, L., Liu, B., Zhao, J., Cheng, H. M. Nano. Res., 3,
pp. 16-22, 2010.
[28] 陳一誠, “金屬氧化物半導體行氣體感測器”, 材料與社會, 68, pp. 62-66, 1992.
[29] 黃炳照, "固態電解質電化學氣體感測器”, Chemistry (The Chinese Chem. Soc., Taipei),
59, pp. 207-217, 2001.
[30] 曾明漢, "觸媒燃燒型氣體感測器”, 材料與社會, 68, pp. 57-61, 992.
[31] C.sonics , A. D’Amico, P. Verardi, and E. Verona, 1998 IEEE Ultrasonics
Symposium Proc., pp. 549-554, 1988.
[32] A. D’Amico, A. Palma, and E. Verona, “Palladium-surface acoustic wave
interaction for hydrogen detection”, Appl. Phys Lett., 41, pp. 300-301,
1982.
[33] A. D’Amico, A. Plama, and E. Verona, “Surface acoustic wave hydrogen
sensor”, Sens. Acuatros, 3, pp. 31-39, 1982.
[34] A. D’Amico, A. Plama, and E. Verona, “Hydrogen Sensor Using a Palladium
Coated Surface Acoustic Wave Delay-Line”, 1982 IEEE Ultrasonic Symposium
Proc., pp. 308-311, 1982.
[35] A. D’Amico, A. Plama, and E. Verona, Proc. Of the 2nd International Meeting
on Chemical Sensors, p. 743, 1985.
[36] 張宏維,周鈺禎,蔡顯仁,徐慧萍,施正雄*, “表面聲波氣體感測器之研製與應用”, Chemistry (The
Chinese Chem. Soc., Taipei) December, pp. 487-498, 2007.
[37] R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Fields”,
Proceedings of the Royal Society of London. Series A, Containing Papers of
a Mathematical and Physical Character, 119, pp. 173-181, 1928.
[38] Tomoko Kasuga,* ,† Masayoshi Hiramatsu, † Akihiko Hoson, † Toru Sekino,‡
and Koichi Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14,
pp. 3160- 3163, 1998.
[39] Jia Liang and Gengmin Zhang, “TiO2 Nanotip Arrays: Anodic Fabrication and
Field-Emission Properties”, ACS Appl. Mater. Interfaces, 4, pp. 6053-6061,
2012.
[40] Jian-Biao Chena, Cheng-Wei Wanga,b,c, ⁎ , Bao-Hong Maa, Yan Lia, Jian
Wanga, Rui-Sheng Guoa, Wei-Min Liub, “Field emission from the structure of
well-aligned TiO2/Ti nanotube arrays”, Thin Solid Films, 517, pp. 4390-
4393, 2009.
[41] Cheng-Wei Wang,∗ ,Rui-Sheng Guo , Jian-Biao Chen , Yan Li and Jian Wang,
Wei-Min Liu, “Field Emission from TiO2 /Ti Nanotube Array Films Modified
with Carbon Nanotubes”, Journal of the Korean Physical Society, 55, pp.
2662-2666, 2009.
[42] Hyung Jin Kim a,1 , Jumi Kim a,b,1 , Byungyou Hong a,c,∗, “Effect of
hydrogen plasma treatment on nano-structured TiO2 filmsfor the enhanced
performance of dye-sensitized solar cell”, Applied Surface Science, 274,
pp.171-175, 2013.
[43] 吳泉毅、楊宗燁、林鴻明,”奈米半導體材料之氣體感測性質”, 奈米科學, pp.405-415, 2003.
[44] Zhouguang Lu,* [a] Cho-Tong Yip,[a] Liping Wang,[c] Haitao Huang,[b] and
Limin Zhou* [a], “Hydrogenated TiO2 Nanotube Arrays as High-Rate Anodes for
Lithium-Ion Microbatteries”, ChemPlusChem, 77, pp.991-1000, 2012.
[45] Lei Qiana,b, *, Zu-Ling Dub, Sheng-Yi Yanga , Zhen-Sheng Jinb, “Raman study
of titania nanotube by soft chemical process”, Journal of Molecular
Structure, 749, pp.103-107, 2005.
[46] Yang Yang, Xiaohui Wang,* , w Changku Sun, and Longtu Li, “Electron Field
Emission and Photoluminescence of Anatase Nanotube Arrays”, J. Am. Ceram.
Soc., 91, 12, pp. 4109-4111, 2008.
[47] S. Srivastava, S. Kumar, V.N. Singh, M. Sigh, Y.K. Vijay. “Synthesis and
characterization of TiO2 doped polyaniline composites for hydrogen gas
sensing.” Int. J. Hydrogen Energy, 36, pp. 6343-6355, 2011.
[48] C.S. Rout, M. Hegde, C.N.R. Rao. “H2S sensors based on tungsten oxide
Nanostructures.” Sensor and Actuators B. 128, pp. 488-493, 2008.
[49] Z. Zhao, M.A. Carpenter, H. Xia, D. Welch. “All-optical hydrogen sensor
based on a high alloy content palladium thin film.” Sensor and Actuators B.
113, pp. 532-538, 2006.
[50] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai.
“Nanotube molecular wires as chemical sensors.” Science, 287, pp. 622-625,
2000.
[51] Gregory D. Smith, Robin J.H. Clark*, “Raman microscopy in archaeological
science”, Journal of Archaeological Science, 31, pp. 1137-1160, 2004.
[52] 高濂, 鄭珊, 張青紅, “奈米光觸媒-奈米研究與應用系列”, 五南圖書出版有限公司.
[53] K. F. Jensen and W. Kern, “Schematic representation of the fundamental
transport and reaction steps underlying MOCVD”, Thin Film Processes II, New
York (1991).
[54] European Virtual Institute for Speciation Analysis (EVISA)
[55] http://chemlab.jlu.edu.cn/Guojiajingpinke/wuli/shyjchzhsh/xshexian1.htm
[56] 國立台灣科技學X光繞射儀實驗室
[57] http://www.kemi.dtu.dk/Forskning/Fysisk-Kemi/Raman_Spektroskopi
[58] Seiji Shinkai, “Preparation of Tio2 hollow fibers using supramolecular
assemblies”, Chem. Mater. 12, pp. 1523-1525, 2000.

無法下載圖示 全文公開日期 2018/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE