簡易檢索 / 詳目顯示

研究生: 邱哲煒
Tse-Wei Chin
論文名稱: PEG接枝Dextran水膠中牛血清蛋白與Vitamin B12藥物的擴散
Diffusion of Bovine Serum Albumin and Vitamin B12 in PEG-Grafted Dextran Hydrogels
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 王大銘
none
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 聚乙二醇牛血清蛋白維他命B12擴散
外文關鍵詞: PEG, Bovine Serum Albumin, Vitamin B12, Diffusion
相關次數: 點閱:237下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討在聚葡萄糖(dextran)水膠中固定合成前驅高分子(dex-MA)的取代度(定義在100個葡萄糖單體中接上methacrylate group的個數),分別加入不同體積比例的聚乙二醇(PEG),交聯後形成在網路結構交聯點間的鏈段上具有PEG側鏈結構的水膠,藉由改變PEG在高分子中的比例來探討不同接枝參數形成之網路結構對網目孔隙的影響。
在側鏈的影響下水對PEG的親合力大於dextran,使水膠含水率隨PEG在水膠中含量遞增。由應力-應變實驗的結果顯示,彈性模數(G)值隨PEG含量增加而上升,可知水膠內的有效交聯密度(νe)隨著側鏈的含量增加而變大。側鏈密度增加,造成水膠網路的交聯密度增加,使交聯點間的分子量(Mc)隨著密度增加而變小;水膠網目大小(ξ)則隨著含水率增加而變大。
利用BSA和Vitamin B12作為釋放實驗的溶質,藉由改變水膠的取代度及含水率,探討溶質在水膠中「擴散自由體積」與「擴散路徑長度」如何受溶質與水膠分子參數控制。根據自由體積理論,由ln(Dm/D0)對(1/H -1)作圖發現,隨著水膠中PEG的含量增加,高分子鏈運動性增加,則直線斜率的絕對值越小;而改變溶質的半徑發現,斜率和溶質半徑近似1.4次方成正比,此結果並不符合Yasuda自由體積理論中斜率和溶質的平方成正比,顯示溶質在水膠中擴散的速率,除了溶質半徑外,還需要考慮溶質和高分子、溶劑間的交互作用力。
當水膠取代度的增加及含水率的增加,網目變大,溶質和網目大小的比值變小,因而減少溶質在水膠中擴散的繞曲度,當溶質直徑和網目大小的比值在0.1和0.8之間,繞曲度的實驗值與Renkin理論值誤差達200%左右,且隨著λ值的增加,實驗值和理論值的差距增加。因此我們推測,影響溶質在水膠中擴散的繞曲度,除了溶質直徑和網目大小的比值外,溶質的形狀也是影響繞曲度的因素之一。


In this study, dextran hydrogels grafted with various volume content of PEG were prepared by polymerization of aqueous solution of glycidyl methacrylate derivatized dextran(dex-MA). The objective is to demonstrate the influence of grafting parameters on the mesh size in PEG-grafted dextran hydrogels.
With increasing contents of PEG, PEG grafted chains make water contents of hydrogels increased. In the compressive stress experiment, the modulus and the effective crosslinking density (ve) increased with the increasing contents of grafted chains. As the crosslinking densities increase, the molecular weights between the crosslinks (Mc) of gels decrease. The hydrogel mesh size (ξ) increasing of water contents increased.
The releases of BSA and Vitamin B12 from hydrogels varying in degrees of substitutions and water contents, are investigated to understand the “free volume of diffusion” and “length of diffusion path” in terms of the molecular parameters of diffusants and gels.
In addition, as the water contents increase, the tortuosity of solutes diffusion in the gels decrease. As the ratio of diameter of solutes to mesh sizes of the gels lie between 0.1 to 0.8, a significant deviation of 200% between the experimental and predicted values is found. However, there’s a large deviation between the experimental and the predicted values at higher ratio. The theoretical lines can’t overlap with experimental data, therefore, it’s believed that the shape in solutes can also affect the tortuosity of solutes diffusion in gels.

中文摘要……………………………………………………Ⅰ 英文摘要……………………………………………………Ⅲ 目錄…………………………………………………………Ⅵ 圖表索引……………………………………………………Ⅷ 一、前言……………………………………………………1 二、實驗方法………………………………………………6 2.1 前驅高分子的製備……………………………………6 2.2 含藥水膠的合成………………………………………6 2.3 水膠彈性模數的測定…………………………………7 2.4 藥物溶液的標定 ……………………………………11 2.5藥物釋放實驗 …………………………………………11 2.6分配係數測量 …………………………………………11 2.7 動態膨潤與平衡膨潤測定……………………………12 三、藥物釋放動力學………………………………………15 四、結果與討論……………………………………………19 4.1 聚葡萄糖水膠分析……………………………………19 4.2 傅立葉轉換紅外線光譜儀(FTIR)分析 ……………19 4.3 核磁共振儀(NMR)分析 ……………………………20 4.4 Flory-Huggins交互作用參數 ………………………20 4.6 水膠網目大小對藥物釋放的影響……………………24 4.7 擴散係數和擴散指數的探討…………………………26 4.8分配係數的探討 ………………………………………28 4.9 擴散數據分析…………………………………………29 4-9-1 利用自由體積理論模型分析 ……………………29 4-9-2 多孔質模型中繞曲度(tortuosity)分析 ………32 4.10水膠動態膨潤的探討…………………………………34 五、結論……………………………………………………37 六、參考文獻………………………………………………39

1.M. Sen, C. Uzun and O. Guven, Controlled release of terbinafine hydrochloride from pH sensitive poly (acrylamide/maleic acid) hydrogels., Int. J. Pharm., 203, 149(2000).
2.A. Gutowska, J. S. Bark, I. C. Kwon, Y. H. Bae, Y. Cha and S. W. Kim, Squeezing hydrogels for controlled oral drug delivery., J. Control. Rel., 48, 141(1997).
3.A. A. Obaidat and K. Park, Characterization of protein release through glucose-sensitive hydrogel membranes., Biomaterials, 18, 801(1997).
4.S. W. Kim, Y. H. Bae, and T. Okano, Hydrogel: Swelling, Drug Loading, and Release., Pharm. Res., 9, 283(1992).
5.N. S. Patil, J. S. Dordick and D. G. Rethwisch, Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules., Biomaterials, 17, 2343(1996).
6.T. Meyvis, S. De Smedt, B. Stubbe, W. Hennink, and J.Demeester, On the release of proteins from degrading dextran methacrylate hydrogels and the correlation with the rheologic properties of the hydrogels, Pharm. Res., 18, 1593(2001).
7.W. N. E. van Dijk-Wolthuis, O. Franseen, H, Talsma, M. J. van Steenbergen, J. J. Kettenes-van den Bosch, and W. E. Hennink, Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran, Macromolecules, 28, 6317(1995).
8.S. J. de Jong, B. van Eerdenbrugh, C. F. van Nostrum, J. J. Kettened-van den Bosch, W. E. Hennink, Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior, J. Control. Rel., 71, 261(2001).
9.I. S. Kim, Y. I. Jeong, and S. H. Kim, Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer, Int. J. Pharm., 205, 109 (2000).
10.K. Moriyama, N. Yui, Regulated insulin release from biodegradable dextran hydrogels containing poly(ethylene glycol), J. Control. Rel., 42, 237 (1996).
11.K. R. Kamath and K. Park, Study on release of invertase from enzymatically degradable dextran hydrogels, Polymer Gels Netw., 3, 243(1995).
12.Y. Aso, S. Yoshioka, Y. Nakai, S. Kojima, Thermally controlled protein release from gelatin-dextran hydrogels,Radiation Physics and Chemistry, 55, 179(1999).
13.Y. Zhang, C. C. Chu, Biodegradable dextran-polylactide hydrogel network and its controlled release of albumin, J. Biomed. Mater. Res, 54, 1(2001).
14.O. Franssen, O. P. Vos, W. E. Hennink, Delayed release of a model protein from enzymatically-degrading dextran hydrogels., J. Control. Rel., 44, 237(1997).
15.W. E. Hennink, H. Talsma, J. C. H. Borchert, S. C. De Smedt, J. Demeester, Contrlled release of proteins from dextran hydrogels., J. Control. Rel., 39, 47(1996).
16.R. W. Korsmeyer and N. A. Peppas, Fffrct of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs., J. Membr. Sci., 9, 211(1981).
17.J. Kiler and N. A. Peppas, Anomalous penetrant transport in glassy polymers: 4. Stresses in partially swellon polymers., Polymer, 28, 1851(1987).
18.P. J. Flory and B. Erman, Theory of elasticity of polymer networks., Macromolecules, 15, 800(1982).
19.B. Erman, Nonhomogeneous state of stress, strain, and awelling in amorphous polymer networks., J. Polym. Sci. Polym. Phys. Ed., 21, 893(1983).
20.P. L. Ritger and N. A. Peppas, A simple equation of solute release.Ⅰ. Fickian and non-Fickian release from non- swellable devices in the form of slabs, sphere, cylinders or discs., J. Control. Rel., 5, 23(1987).
21.P. L. Ritger and N. A. Peppas, A simple equation of solute release.Ⅱ. Fickian and anomalous release from swellable devices., J. Control. Rel., 5, 37(1987).
22.T. K. Mandal, The influence of binding solvents on drug release from hydroxypropyl methylcellulose tablets., Drug Dev. Ind. Pharm., 21, 1389(1995).
23.W. N. E. van Dijk-Wolthuis, O. Franseen, H, Talsma, M. J. van Steenbergen, J. J. Kettenes-van den Bosch, and W. E. Hennink, Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran., Macromolecules, 28, 6317(1995).
24.P. J. Flory, “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, pp. 492(1953).
25.L. B. Peppas and N. A. Peppas, Structural analysis of charged polymeric networks., Polym. Bull., 20, 285(1988).
26.T. Canal and N. A. Peppas, Correlation between mesh size and equilibrium degree of swelling of polymeric networks., J. Biomed. Mater. Res., 23, 1183(1989).
27.K. Gekko, Solution Properties of Polysaccharides, in D. A. Brant, pp. 415-438(1981).
28.N. A. Peppas and E. W. Merrill, Poly(vinyl alcohol) hydrogel: reinforcement of radiation-crosslinked networks by crystallization., J. Polym. Sci. Polym. Chem., 14, 441(1976).
29.J. L. Stringer and N. A. Peppas, Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels., J. Control. Rel., 42, 195(1996).
30.S. Sato and S. W. Kim, Macromolecular diffusion through polymer membranes., Int. J. Pharm., 22, 229(1984).
31.E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, New York, pp. 173(1997).
32.E. M. Renkin, Filtration, diffusion, and molecular sieving through porous cellulose memebranes., J. Gen. Physiol., 38, 225(1954).
33.W. M. Deen, Hindered transport of large molecules in liquid-filled pores., AICHE Journal, 33, 1409(1987).
34.J. L. Anderson and J. A. Quinn, Restricted transport in small pores., Biophys. J., 14, 130(1974).
35.M. F. Refojo and F. L. Leong, Microscopic determination of the penetration of protein and polysaccharides into poly(hydroxyethyl methacrylate) and similar hydrogels., J. Polym. Sci., Polym. Symp., 66, 227(1979).
36.洪秋蓮, 聚(丙烯腈-丙烯醯胺-丙烯酸)水膠膨潤行為的環境效應, 台灣科技大學碩士論文, pp. 88-90(民國85年).
37.K. G. Urdahl and N. A. Peppas, Anomalous penetrant transport in glassy polymers. Ⅵ. Effect of temperature on transport. Polym. Eng. Sci., 28, 96(1988).
38.Malaisiri Muangsiri and Lee E. Kirsch, The protein-binding and drug release properties of macromolecular conjugates containing daptomycin and dextran. Int. J. Pharm.,315 (2006).

無法下載圖示 全文公開日期 2008/01/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE