簡易檢索 / 詳目顯示

研究生: Alvin Fulbert
Alvin Fulbert
論文名稱: 自主移動機器人智慧視覺同時定位與地圖建構之開發
Development of Intelligent Visual Simultaneous Localization and Mapping for Autonomous Mobile Robots
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 徐勝均
柯正浩
黃旭志
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 56
中文關鍵詞: 視覺同時定位與地圖建構 (Visual Simultaneous Localization and Mapping, VSLAM)模型預測控制(Model Predictive Control , MPC)黑盒優化(Black-Box Optimization)參數最佳化斑點鬣狗優化器(Spotted Hyena Optimizer, SHO)
外文關鍵詞: VSLAM, MPC, Black-Box Optimization, Parameter Optimization, SHO
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,移動機器人的出現對於工業、研究和日常生活都加以重新塑造,推動 機器人領域進入多功能性和能力的新維度。儘管自主移動機器人前景光明,但在完 善和推進導航和控制策略以確保無縫整合到我們複雜與不斷變化的世界方面仍然存 在巨大的挑戰。因此,為了克服這些挑戰,本論文提出了一種採用斑點鬣狗優化器 (Spotted Hyena Optimizer, SHO)黑盒優化(Black-Box Optimization)技術來微調參數設 定的方法,以增強視覺同時定位與地圖建構(Visual Simultaneous Localization and Mapping, VSLAM)系統的穩健性和精確度。我們選擇使用黑盒優化技術,因為它具 有出色的多功能性,並且對系統底層功能深入了解的要求最低。這種方法具有適應 各種複雜系統的優勢,使其能夠在不同的應用中充分發揮其潛力。依靠這種多功能 方法,可以確保更廣泛的使用者可以使用該解決方案,而無需深入了解系統內部工 作的複雜性。它不僅簡化了實作,還增強了整體可用性和適用性,使其成為解決複 雜挑戰的使用者友善工具。更進一步,模型預測控制器(Model Predictive Control , MPC)也被採用來提高機器人導航的精確度和準確度。我們的方法已證明其在克服這 些複雜挑戰方面的有效性。透過模擬和實驗,系統整體性能的提升是顯而易見的。 結果凸顯了它所帶來的精確度、穩健性和適應性,使其成為解決現代系統固有複雜 性的可靠且多功能的解決方案。


In recent years, the emergence of mobile robots has reshaped industries, research, and everyday life, propelling the robotics field into new dimensions of versatility and capability. Despite the promising future of autonomous mobile robots, a formidable challenge persists in refining and advancing navigation and control strategies to ensure seamless integration into our complex and ever-changing world. Therefore, to overcome these challenges, this thesis proposes a method that employs Spotted Hyena Optimizer (SHO) black-box optimization techniques to fine-tune the parameter settings to enhance the robustness and precision of the Visual Simultaneous Localization and Mapping (VSLAM) system. We have chosen to use the black-box optimization technique due to its exceptional versatility and the minimal requirement for in-depth knowledge of the system’s underlying functions. This approach offers the advantage of adaptability to a wide range of complex systems, allowing it to harness its full potential across diverse applications. Relying on this versatile methodology ensures that the solution remains accessible to a broader spectrum of users without having to have a deep understanding of the intricacies of the system’s internal workings. Not only does it simplify implementation, but it also enhances the overall usability and applicability, making it a user-friendly tool for addressing complex challenges. Moreover, a model predictive controller (MPC) is also implemented to improve navigation of the robot with precision and accuracy. Our method has demonstrated its effectiveness in overcoming these intricate challenges. Through simulation and experimentation, an improvement in the system’s overall performance is evident. The results highlight the precision, robustness, and adaptability it brings, making it a reliable and versatile solution for addressing the complexities intrinsic in modern systems.

Acknowledgements I 摘要 II Abstract III Table of Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Objectives 3 1.3 Thesis Outline 4 Chapter 2 Background and Theory 5 2.1 Visual Simultaneous Localization and Mapping (VSLAM) 5 2.1.1 Visual-Only SLAM 6 2.1.2 Visual-Inertial SLAM 7 2.1.3 Red Green Blue-Depth (RGB-D) SLAM 8 2.1.4 Real-Time Appearance-Based Mapping (RTAB-Map) 9 2.2 Performance Evaluation Metric 12 2.2.1 Absolute Trajectory Error (ATE) 12 2.2.2 Datasets 13 2.3 Optimization Algorithm 13 2.3.1 Metaheuristic Optimization Algorithms 14 2.4 Spotted Hyena Optimizer (SHO) Algorithm 15 2.4.1 Encircling the Prey 16 2.4.2 Hunting the Prey 17 2.4.3 Exploitation (Attacking the Prey) 18 2.4.4 Exploration (Searching for Prey) 18 2.4.5 Algorithm of SHO 19 2.5 Parameter Black-Box Optimization 19 2.6 Model Predictive Controller (MPC) 21 Chapter 3 Methods 23 3.1 VSLAM and Optimization Algorithm Choice 23 3.2 SHO-Based RTAB-Map Parameter Optimization 23 3.3 The Fitness Function 26 3.4 Dataset 26 3.5 TurtleBot3 Burger Kinematic Model 27 3.6 Mathematical Modelling of Model Predictive Controller for TurtleBot3 29 3.7 Experimental Setup 30 3.7.1 Optimization Setup 31 3.7.2 TurtleBot3 Setup 32 3.7.3 Environmental Setup 33 Chapter 4 Results and Discussion 36 4.1 Optimization Results for RTAB-Map Parameters 36 4.2 VSLAM Simulation Results 37 4.3 MPC Trajectory Tracking 44 Chapter 5 Conclusion and Future Works 49 5.1 Conclusion 49 5.2 Future Works 49 References 51

[1] N. A. Zghair and A. S. Al-Araji, “A one decade survey of autonomous mobile robot systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 6, pp. 4891–4906, December 2021.
[2] M. Tavakoli, J. Carriere, and A. Torabi, “Robotics, smart wearable technologies, and autonomous intelligent systems for Healthcare during the COVID‐19 pandemic: An analysis of the state of the art and future vision,” Advanced Intelligent Systems, vol. 2, no. 7, pp. 1–7, May 2020.
[3] M. B. Alatise and G. P. Hancke, “A review on challenges of autonomous mobile robot and Sensor Fusion Methods,” IEEE Access, vol. 8, pp. 39830–39846, February 2020.
[4] H. Taheri and Z. C. Xia, “Slam; definition and evolution,” Engineering Applications of Artificial Intelligence, vol. 97, pp. 1–25, November 2021.
[5] A. Tourani, H. Bavle, J. L. Sanchez-Lopez, and H. Voos, “Visual slam: What are the current trends and what to expect?” Sensors, vol. 22, no. 23, pp. 1–29, November 2022.
[6] J. Cheng, L. Zhang, Q. Chen, X. Hu, and J. Cai, “A review of visual slam methods for autonomous driving vehicles,” Engineering Applications of Artificial Intelligence, vol. 114, pp. 1–17, June 2022.
[7] J. Ni, T. Gong, Y. Gu, J. Zhu, and X. Fan, “An improved deep residual network-based semantic simultaneous localization and mapping method for monocular vision robot,” Computational Intelligence and Neuroscience, vol. 2020, pp. 1–14, February 2020.
[8] X. Gao, R. Wang, N. Demmel, and D. Cremers, “LDSO: Direct sparse odometry with loop closure,” in Proc. IEEE International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 1-5, 2018, pp. 2198–2204.
[9] L. Yang, F. Tan, A. Li, Z. P. Cui, Y. Furukawa, and P. Tan, “Polarimetric dense monocular slam,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA, June 18-22, 2018, pp. 3857–3866.
[10] N. Nedjah, L. Macedo Mourelle, and P. J. Albuquerque de Oliveira, “Simultaneous localization and mapping using swarm intelligence based methods,” Expert Systems with Applications, vol. 159, pp. 1–20, May 2020.
[11] A. Kostusiak and P. Skrzypczyński, “On the efficiency of population-based optimization in finding best parameters for RGB-D visual odometry,” Journal of Automation, Mobile Robotics and Intelligent Systems, pp. 5–14, April 2019.
[12] I. Carlucho, M. De Paula, and G. G. Acosta, “Double Q-PID algorithm for Mobile Robot Control,” Expert Systems with Applications, vol. 137, pp. 292–307, Jun. 2019.
[13] H. Efheij, A. Albagul, and N. Ammar Albraiki, “Comparison of model predictive control and PID controller in real time process control system,” in Proc. 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 24-26 March, 2019, pp. 64–69.
[14] M. S. Khan, D. Hussain, K. Naveed, U. S. Khan, I. Q. Mundial, and A. B. Aqeel, “Investigation of widely used slam sensors using analytical hierarchy process,” Journal of Sensors, vol. 2022, pp. 1–15, January 2022.
[15] A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A comprehensive survey of visual slam algorithms,” Robotics, vol. 11, no. 1, pp. 1–27, February 2022.
[16] R. Azzam, T. Taha, S. Huang, and Y. Zweiri, “Feature-based visual simultaneous localization and mapping: A survey,” SN Applied Sciences, vol. 2, no. 2, pp. 1–24, January 2020.
[17] J. Hartmann, J. H. Klussendorff, and E. Maehle, “A comparison of feature descriptors for visual slam,” in Proc. European Conference on Mobile Robots, Barcelona, Spain, 25-27 September, 2013, pp. 56–61.
[18] S. Y. Loo, A. J. Amiri, S. Mashohor, S. H. Tang, and H. Zhang, “CNN-SVO: Improving the mapping in semi-direct visual odometry using single-image depth prediction,” in Proc. International Conference on Robotics and Automation (ICRA), Montreal, Canada, 20-24 May, 2019, pp. 5218–5223.
[19] M. Labbé and F. Michaud, “RTAB‐map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, October 2018.
[20] M. Labbe and F. Michaud, “Appearance-based loop closure detection for online large-scale and long-term operation,” IEEE Transactions on Robotics, vol. 29, no. 3, pp. 734–745, February 2013.
[21] S. Das, “Simultaneous localization and mapping (SLAM) using RTAB-map,” arXiv.org, https://arxiv.org/abs/1809.02989, pp. 1–6, September, 2018.
[22] N. Ragot, R. Khemmar, A. Pokala, R. Rossi, and J.-Y. Ertaud, “Benchmark of visual slam algorithms: Orb-SLAM2 vs RTAB-map,” in Proc. Eighth International Conference on Emerging Security Technologies (EST), Colchester, UK, 22-24 July, 2019, pp. 1–6.
[23] D. Prokhorov, D. Zhukov, O. Barinova, K. Anton, and A. Vorontsova, “Measuring robustness of Visual slam,” in Proc. International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 27-31 May, 2019, pp. 1–6.
[24] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1-5 October, 2018, pp. 7244–7251.
[25] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cremers, “The tum VI benchmark for evaluating visual-inertial odometry,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1-5 October, 2018, pp. 1680–1687.
[26] R. Zheng, H. Jia, L. Abualigah, Q. Liu, and S. Wang, “Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization,” Processes, vol. 9, no. 10, pp. 1–25, October 2021.
[27] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation metaheuristic algorithms,” Computers & Industrial Engineering, vol. 137, pp. 1–29, September 2019.
[28] P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed, “Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019),” IEEE Access, vol. 9, pp. 26766–26791, February 2021.
[29] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on Genetic Algorithm: Past, present, and future,” Multimedia Tools and Applications, vol. 80, no. 5, pp. 8091–8126, October 2020.
[30] E. Rashedi, E. Rashedi, and H. Nezamabadi-pour, “A comprehensive survey on gravitational search algorithm,” Swarm and Evolutionary Computation, vol. 41, pp. 141–158, March 2018.
[31] G. Singh and A. Singh, “A hybrid algorithm using particle swarm optimization for solving transportation problem,” Neural Computing and Applications, vol. 32, no. 15, pp. 11699–11716, December 2019.
[32] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf optimizer: A review of recent variants and applications,” Neural Computing and Applications, vol. 30, no. 2, pp. 413–435, November 2017.
[33] G. Dhiman and V. Kumar, “Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications,” Advances in Engineering Software, vol. 114, pp. 48–70, May 2017.
[34] F. Tang, B. Mao, N. Kato, and G. Gui, “Comprehensive survey on machine learning in vehicular network: technology, applications and challenges,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 2027–2057, June 2021.
[35] M. Juneja and S. K. Nagar, “Particle swarm optimization algorithm and its parameters: A Review,” in Proc. International Conference on Control, Computing, Communication and Materials (ICCCCM), Varanasi, India, 21-22 October, 2016, pp. 1–5.
[36] S. B. Joseph, E. G. Dada, A. Abidemi, D. O. Oyewola, and B. M. Khammas, “Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems,” Heliyon, vol. 8, no. 5, pp. 1–29, May 2022.
[37] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, July 2020.
[38] K. Terayama, M. Sumita, R. Tamura, and K. Tsuda, “Black-box optimization for automated discovery,” Accounts of Chemical Research, vol. 54, no. 6, pp. 1334–1346, February 2021.
[39] S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. L. Digabel, “Two decades of blackbox optimization applications,” EURO Journal on Computational Optimization, vol. 9, pp. 1–13, September 2021.
[40] J. Drgoňa, J. Arroyo, I. C. Figueroa, D. Blum, K. Arendt, D. Kim, E. P. Ollé, J. Oravec, M. Wetter, D. L. Vrabie, and L. Helsen, “All you need to know about model predictive control for buildings,” Annual Reviews in Control, vol. 50, pp. 190–232, September 2020.
[41] B. S. Taysom, C. D. Sorensen, and J. D. Hedengren, “A comparison of model predictive control and PID temperature control in friction stir welding,” Journal of Manufacturing Processes, vol. 29, pp. 232–241, August 2017.
[42] G. Wang, M. Zhang, Y. Huang, L. Zhang, and F. Wang, “Robust two-dimensional spatial-variant map-drift algorithm for UAV SAR autofocusing,” Remote Sensing, vol. 11, no. 3, pp. 1–27, February 2019.
[43] Y. Zhang, X. Wang, X. Wu, W. Zhang, M. Jiang, and M. Al-Khassaweneh, “Intelligent hotel ROS-based service robot,” in Proc. IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20-22 May, 2019, pp. 399–403.
[44] T. P. Nascimento, C. E. Dórea, and L. M. Gonçalves, “Nonholonomic mobile robots’ trajectory tracking model predictive control: A survey,” Robotica, vol. 36, no. 5, pp. 676–696, May 2018.
[45] A. Salimi Lafmejani and S. Berman, “Nonlinear MPC for collision-free and deadlock-free navigation of multiple nonholonomic Mobile Robots,” Robotics and Autonomous Systems, vol. 141, pp. 1–6, March 2021.
[46] X. Cao, D. C. Bui, D. Takács, and G. Orosz, “Autonomous unicycle: Modeling, dynamics, and control,” Multibody System Dynamics, pp. 1–34, June 2023.
[47] C. Moler and J. Little, “A history of MATLAB,” Proceedings of the ACM on Programming Languages, vol. 4, no. HOPL, pp. 1–67, June 2020.
[48] W. Guan, S. Chen, S. Wen, Z. Tan, H. Song, and W. Hou, “High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning,” IEEE Photonics Journal, vol. 12, no. 2, pp. 1–16, March 2020.
[49] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence,” Information, vol. 11, no. 4, pp. 1–44, April 2020.
[50] K. Worthmann, M. W. Mehrez, M. Zanon, G. K. I. Mann, R. G. Gosine, and M. Diehl, “Model predictive control of nonholonomic mobile robots without stabilizing constraints and costs,” IEEE Transactions on Control Systems Technology, vol. 24, no. 4, pp. 1394–1406, October 2015.

無法下載圖示 全文公開日期 2026/01/15 (校內網路)
全文公開日期 2026/01/15 (校外網路)
全文公開日期 2026/01/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE