簡易檢索 / 詳目顯示

研究生: 黃子庭
ZIH-TING HUANG
論文名稱: 性能提高的柔性複合超級電容器
Enhancive Performance of Flexible Composite Supercapacitors
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 周宏隆
Hung-Lung Chou
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 54
中文關鍵詞: 聚吡咯纖維素碳點聚苯胺超級電容器
外文關鍵詞: polypyrrole, cellulose, carbon-dots, polyaniline, supercapacitors
相關次數: 點閱:366下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  纖維素當作基底並使用聚苯胺(Polyaniline, PANi)和聚吡咯(Polypyrrole, PPy)以及加入奈米碳點獨立形成複合材料,並使用原位聚合法(in-situ polymerization method)合成不同重量(胺的單體為: 60, 90, 120, 150 and 180μl 吡咯單體為: 60, 120, 180, 240μl 吡咯奈米碳點系列: 吡咯單體為180μl 奈米碳點: 50, 100, 300, 500μl)的聚合材料。
      本實驗發現在聚苯胺系列的電極系列中,當在胺單體120μl時其比電容值達到最高(174 F/g在掃描速率為5mV /s時)。同時,在聚吡咯系列電極中,比電容值隨吡咯含量降低而逐漸變小。儘管180μl吡咯量的比電容值低於240μl吡咯量,但由於180μl吡咯量做出的膜電極柔韌性較240μl吡咯量做出的膜電極好出許多,根據實驗目的是為了做出柔性電極,因此取180μl吡咯量做出的膜為我們最好的重量比,這些電化學結果表明聚吡咯複合材料比聚苯胺系列有著更好的特性,這兩種聚合材料都修正了纖維素沒有導電度的問題,因此複合材料膜電極不僅有更好的機械性能,而且擁有更快的電荷轉移促進了聚合物和纖維素之間的加強協同作用。
      此外,複合膜電極的穩定度有些微不同,在經過三千次循環後聚苯胺膜電極穩定性為81%,但聚吡咯為97,聚吡咯被塗覆在纖維素上可以製造良好的柔性電極。
      但以上兩種聚合物指出它們不能使薄膜具有優異的充電和放電,因此將碳點加入到用吡咯原位聚合以提高充放電的比電容,與沒有碳點的電極相比,有碳點的膜電極表現出優異的電化學改變。順帶一提,100μl碳點與吡咯的複合膜的比電容為1073 F/g,這個值比沒有碳點薄膜高1.9倍。另外,這些複合材料薄膜的充放電比沒有碳點的情況下顯示出更好的充電和放電的比電容值,表明這種材料可以高效率地製造用於能量存儲設備的柔性電極。


    Composite materials were synthesized by polyaniline, polypyrrole and carbon dots on cellulose-based substrates, independently. The materials at different weights were prepared by the in-situ polymerization method.
      In the case of Polyaniline-series electrodes, the specific capacitance was maximum (174 F/g at a scan rate of 5mV/s) in 120μl of aniline monomer. Meanwhile, in the Polypyrrole-series film electrodes, the specific capacitance significantly decreased from 571 F/g at 5 mV/s of 240μl (pyrrole amounts) with decreasing content of pyrrole amounts. Although the specific capacitance of 180μl pyrrole amount electrode was lower than that of 240μl pyrrole amount electrode, the flexibility of 180μl pyrrole amount electrode was better than that of 240μl amount. These electrochemical results indicate that Polypyrrole-composites have better properties than PANi-series. Furthermore, the stability of polyaniline was 81% after 3000 cycles, but polypyrrole and Cdot-ppy were almost 100%.
      Since two polymers above indicated the inferior charge/discharge profile, carbon dots as added into in-situ polymerization with pyrrole to enhance their specific capacitance. The addition of carbon dots on composite films consisting of polypyrrole showed superior electrochemical performance in comparison with the electrode without carbon dots. Incidentally, the specific capacitance was 1073 F/g for the composite film added 100μl carbon dots. This value is 1.9 times higher than that electrode without carbon dots. Moreover, these composites film also showed better charge/discharge shape than that without carbon dots. These results indicate that this composite can produce a flexible electrode for energy storage devices with high efficiency.

    Abstract i 摘要 ii Acknowledgements iii Contents iv List of Figures vi Chapter 1: Introduction and Motivation 1 1.1 Classification of Supercapacitors 1 1.2 Materials for Supercapacitors 3 1.3 Applications of Supercapacitors 6 1.4 Motivation 7 Chapter 2: Experimental Section 9 2.1 Materials 9 2.2 Experimental process 10 2.2.1 Preparation of TEMPO-oxidized cellulose nanofiber 10 2.2.2 Synthesis of TEMPO-oxidized cellulose nanofiber/conducting polymers composites films 11 2.2.3 Synthesis of TEMPO-oxidized cellulose nanofiber/Polypyrrole/C-dots films 14 2.2.4 Measurement for electrochemical 16 2.3 Instruments 17 Chapter 3: Results and Discussion 18 3.1 Characterization 18 3.1.1 Characterization of composites 18 3.1.2 Electrochemical Performance of composite electrodes 24 3.1.3 Specific capacitance induced by C-dots 31 3.2 Composites electrodes for two-electrode system 36 Chapter 4: Conclusion 39 References 40

    References
    1. Chiam, S., Lim, H., Hafiz, S., Electrochemical Performance of Supercapacitor with Stacked Copper Foils Coated with Graphene Nanoplatelets. Sci. Rep-UK, 2018. 8(1): p. 3093.
    2. Hammar, A., Venet, P., Lallemand, R., Study of accelerated aging of supercapacitors for transport applications. IEEE T. Ind Electron., 2010. 57(12): p. 3972-3979.
    3. Xie, B., Zou, P., Yang, C. Ultrahigh power graphene based supercapacitor. ICEPT, 2015 16th International Conference on. 2015. IEEE.
    4. Kim, S., Chou, P.H., Energy harvesting with supercapacitor-based energy storage, in Smart Sensors and Systems. 2015, Springer. p. 215-241.
    5. Salanne, M., Rotenberg, B., Naoi, K., Efficient storage mechanisms for building better supercapacitors. Nat. Energy, 2016. 1(6): p. 16070.
    6. Luo, X., Wang, J., Dooner, M., Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. energy, 2015. 137: p. 511-536.
    7. Chen, T., Dai, L., Carbon nanomaterials for high-performance supercapacitors. Materials Today, 2013. 16(7-8): p. 272-280.
    8. Yassine, M., Fabris, D., Performance of Commercially Available Supercapacitors. Energies, 2017. 10(9): p. 1340.
    9. Murray, D.B., Hayes, J.G., Cycle testing of supercapacitors for long-life robust applications. IEEE T. P. Electr., 2015. 30(5): p. 2505-2516.
    10. Hong, J.-I., Yeo, I.-H., Paik, W.-K., Conducting polymer with metal oxide for electrochemical capacitor: Poly (3, 4-ethylenedioxythiophene) RuO x electrode. J. Electrochem. Soc., 2001. 148(2): p. A156-A163.
    11. Chen, L., Hou, Y., Kang, J., Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes. J. Mater. Chem. A, 2014. 2(22): p. 8448-8455.
    12. Lee, J.-S.M., Briggs, M.E., Hu, C.-C., Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano energy, 2018. 46: p. 277-289.
    13. Wang, Y., Song, Y., Xia, Y., Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev., 2016. 45(21): p. 5925-5950.
    14. Isogai, A., Saito, T., Fukuzumi, H., TEMPO-oxidized cellulose nanofibers. nanoscale, 2011. 3(1): p. 71-85.
    15. Zhang, W., Jing, Z., Shan, Y., Paper reinforced with regenerated cellulose: a sustainable and fascinating material with good mechanical performance, barrier properties and shape retention in water. J. Mater. Chem. A, 2016. 4(44): p. 17483-17490.
    16. Costa, M., Veigas, B., Jacob, J., A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 2014. 25(9): p. 094006.
    17. E Moraes, A.R.F., Pola, C.C., Bilck, A.P., Starch, cellulose acetate and polyester biodegradable sheets: Effect of composition and processing conditions. Mat. Sci. Eng. C, 2017. 78: p. 932-941.
    18. Kim, J.-H., Mun, S., Ko, H.-U., Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology, 2014. 25(9): p. 092001.
    19. Wang, Z., Carlsson, D.O., Tammela, P., Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS nano, 2015. 9(7): p. 7563-7571.
    20. Wang, Z., Tammela, P., Strømme, M., Cellulose‐based Supercapacitors: Material and Performance Considerations. Adv. Energy Mater., 2017. 7(18): p. 1700130.
    21. Ates, M., Karazehir, T., Sezai Sarac, A., Conducting polymers and their applications. Current Physical Chemistry, 2012. 2(3): p. 224-240.
    22. Eftekhari, A., Li, L., Yang, Y., Polyaniline supercapacitors. J. Power Sources, 2017. 347: p. 86-107.
    23. Vernitskaya, T.Y.V., Efimov, O.N., Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev., 1997. 66(5): p. 443-457.
    24. Chen, X., Devaux, J., Issi, J., The stability of polypyrrole electrical conductivity. Eur. Polym. J., 1994. 30(7): p. 809-811.
    25. Abel, S.B., Yslas, E.I., Rivarola, C.R., Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect. Nanotechnology, 2018. 29(12): p. 125604.
    26. Kulkarni, V.G., Campbell, L.D., Mathew, W.R., Thermal stability of polyaniline. Synthetic Met., 1989. 30(3): p. 321-325.
    27. González, A., Goikolea, E., Barrena, J.A., Review on supercapacitors: technologies and materials. Renewable Sust. Energ. Rev., 2016. 58: p. 1189-1206.
    28. Khaligh, A., Li, Z., Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE T. Veh. Technol., 2010. 59(6): p. 2806-2814.
    29. Averbukh, M., Lineykin, S., Kuperman, A., Portable ultracapacitor-based power source for emergency starting of internal combustion engines. IEEE T. Power Electr., 2015. 30(8): p. 4283-4290.
    30. Patil, S.J., Patil, B.H., Bulakhe, R.N., Electrochemical performance of a portable asymmetric supercapacitor device based on cinnamon-like La 2 Te 3 prepared by a chemical synthesis route. RSC Adv., 2014. 4(99): p. 56332-56341.
    31. Douglas, H., Pillay, P. Sizing ultracapacitors for hybrid electric vehicles. in Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE. 2005. Citeseer.
    32. Cao, J., Emadi, A., A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE T. Power Electr. , 2012. 27(1): p. 122-132.
    33. Burke, A., Ultracapacitor technologies and application in hybrid and electric vehicles. Int. J. Energ. Res., 2010. 34(2): p. 133-151.
    34. Gidwani, M., Bhagwani, A., Rohra, N., Supercapacitors: the near Future of Batteries. Int. j. eng., 2014. 4(5): p. 22-2.
    35. Kim, B.K., Sy, S., Yu, A., Electrochemical supercapacitors for energy storage and conversion. Handb. Clean Energ. Syst., 2015: p. 1-25.
    36. Mastragostino, M., Arbizzani, C., Soavi, F., Conducting polymers as electrode materials in supercapacitors. Solid state ionics, 2002. 148(3-4): p. 493-498.
    37. Bengtsson, K., Nilsson, S., Robinson, N.D., Conducting polymer electrodes for gel electrophoresis. PloS one, 2014. 9(2): p. e89416.
    38. Green, R., Matteucci, P., Hassarati, R., Performance of conducting polymer electrodes for stimulating neuroprosthetics. J. Neur. Eng., 2013. 10(1): p. 016009.
    39. De Nooy, A.E., Besemer, A.C., Van Bekkum, H., Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. , 1995. 269(1): p. 89-98.
    40. Maity, P., Khandelwal, M., Synthesis time and temperature effect on polyaniline morphology and conductivity. American Journal, Hyderabad, 2016: p. 37-42.
    41. Singh, R., Tandon, R., Panwar, V., Low temperature relaxation in polypyrrole. J. Chem. Phys., 1991. 95(1): p. 722-723.
    42. Casado, U., Aranguren, M., Marcovich, N., Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultrason. Sonochem., 2014. 21(5): p. 1641-1648.
    43. Sasso, C., Zeno, E., Petit‐Conil, M., Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromolecular Materials and Engineering, 2010. 295(10): p. 934-941.
    44. Devadas, B. Imae, T., Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sust. Chem. Eng., 2017. 6(1): p. 127-134.

    無法下載圖示 全文公開日期 2023/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE