簡易檢索 / 詳目顯示

研究生: 胡星妮
Husni - Husin
論文名稱: Fabrication of La-doped NaTaO3 via H2O2 Assisted Sol-Gel Route and Their Photocatalytic Activity for Hydrogen Production
Fabrication of La-doped NaTaO3 via H2O2 Assisted Sol-Gel Route and Their Photocatalytic Activity for Hydrogen Production
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 鄧熙聖
none
吳季珍
none
蘇威年
none
陳良益
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 166
中文關鍵詞: Lanthanun -doped Sodium Thantalum oxidehydrogen evolution
外文關鍵詞: Lanthanun -doped Sodium Thantalum oxide, hydrogen evolution
相關次數: 點閱:211下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氫氣為一理想之乾淨能源,且其亦為許多化學工業之原料。近來,氫氣主要的來源由非再生能源(如化石燃料)或非環保與經濟之高能量消耗程序產生。因此,新穎之產氫程序之開發如再生能源材料,如生質材料與水,將有機會成為未來數十年極為熱門之研究課題。光催化水產氫為廣泛與具有潛力之方式,由於水含量豐富與取得之方便性,僅利用太陽光與金屬氧化物半導體觸媒,此反應程序即可在大氣條件下進行。而鈉鉭氧 (NaTaO3)為對光催化水分解極有效率的觸媒之一。
本研究之目標為發展對產氫具有潛力的鑭-參雜之鈉鉭氧光觸媒。以過氧化氫-水為溶劑系統,利用雙氧水促進之溶膠-凝膠法合成參雜不同濃度之三價鑭離子(La3+)之結晶鈉鉭氧奈米粒子。在此反應中,五氯化鉭(TaCl5)溶解於雙氧水溶液中,形成穩定透明之Ta-peroxo錯合物之溶液。Ta-peroxo錯合物之形成與檸檬酸之螯合可對於晶體成長有較佳之幫助,並由軟體模擬三價鑭離子取代鈉鉭氧之晶體,結果顯示鑭取代鈉在鈉鉭氧之位置,其模擬結果與實驗結果相符合。適量之鑭離子能有效地增加結晶性而可預防聚集,並可幫助有效地電荷分離且避免光電子電洞之結合。光催化產氫量最高為2.9 mmol g-1h-1 2.0 mol% 鑭-參雜之鈉鉭氧樣品,其1.8倍高於未參雜之鈉鉭氧樣品。比較以溶膠-凝膠法(HT)合成之光觸媒與傳統溶膠-凝膠法(ET)合成光觸媒之水分解光催化活性,HW-之觸媒活性比ET-觸媒活性大1.65倍。相較於傳統之溶膠-凝膠法,雙氧水促進之溶膠-凝膠法合成有較佳之結晶性。
藉由鎳(Ni)奈米粒子共觸媒之沉積在La0.02Na0.98TaO3表面,觸媒之活性可增加10倍。利用鎳之三種狀態(即鎳金屬,氧化鎳,鎳/氧化鎳核殼) La0.02Na00.98TaO3對從純水與甲醇水溶液之氫之機制做系統之研究產。活性從純水之順序為Ni/NiO > NiO >Ni,而活性以甲醇水溶液為Ni > Ni/NiO > NiO。新穎雙金屬鈀/氧化鎳(Pd/NiO)核殼奈米粒子利用含浸法(impregnation)沉積於La0.02Na0.98TaO3光觸媒表面,然後進行低溫熱處理。鈀/氧化鎳核殼奈米粒子合成不同厚度之氧化鎳殼,並推測鈀/氧化鎳奈米粒子之機制。鈀奈米粒子相較於鈀/氧化鎳核殼樣品,表現出最佳之催化活性。然而,由於快速之水生成反應,鈀奈米粒子在水溶液中幾乎沒有活性。氧化鎳殼厚度之效應對光催化活性有系統之探討。殼的厚度隨加入的鎳的量而增厚,鈀/氧化鎳核殼(1 nm厚) 0.1 wt% 鈀與0.2 wt% 鎳表現出最佳之氫氣產量,約為與3.42 mmol g-1h-1 從純水與26.2 mmol g-1h-1從甲醇水溶液。加入甲醇水溶液當犧牲試劑,扮演電子提供者之角色,可提升氫氣之產量。
藉由甲醇扮演犧牲試劑,有效地抓住電洞(hole),避免電子-電洞再結合效應,而有較高之產氫效果。然而,再結合與電荷轉移反應的競爭造成氫與氧在光觸媒表面之逆反應。氫氣產量從純水為Pd/NiO>Pd,而從甲醇水溶液為Pd>Pd/NiO。甲醇水溶液之產氫中,金屬鎳與鈀為最具活性且利於反應之活性位置。
氧化鎳包附之鎳與鈀奈米粒子可抑制氧氣光還原與/或促進水之光還原。核殼結構之Ni/NiO與Pd/NiO對水分解產氫有極大之重要性,因此Ni/NiO與Pd/NiO奈米粒子沉積於La0.02Na0.98TaO3為具有潛力之光觸媒產氫系統對於水或甲醇溶液。由此快速與環保之”綠色程序”可合成出具有較佳之結晶性,較小之粒徑與較佳光催化活性之鑭-參雜鈉鉭氧奈米粒子。


Hydrogen is an ideal source of clean energy as well as being a raw material in many chemical industries. Recently, hydrogen has been mainly obtained from non-renewable resources (e.g., fossil fuels) or from high-energy consumption processes that are neither environmentally friendly nor economical. Therefore, the development of new methods to produce hydrogen from sustainable materials, such as biomass and water, will become a hot topic of research in the coming decades. The photocatalytic production of hydrogen from water is an attractive and potentially rewarding approach because water is abundant and freely available. The reaction processes can occur in ambient conditions using only sunlight and a metal oxide semiconductor photocatalyst. Among various metal oxides, NaTaO3 was reported to be one of the most efficient photocatalysts for water decomposition.
The general goal of this research has been to develop the potential of a La-doped NaTaO3 photocatalyst for use in hydrogen production. To achieve this, crystalline NaTaO3 nanoparticles (NPs) doped with different concentrations of La3+ were synthesized via a H2O2-assisted sol-gel route using a hydrogen peroxide-water based solvent system (HW-derived). In this reaction, TaCl5 was dissolved in aqueous H2O2 solution to form a stable transparent Ta-peroxo complex solution. The formation of tantalum-peroxo complexes and their chelation by citric acid enables a better control of crystal growth. The substitution of La3+ ions in the NaTaO3 lattice is verified by crystallographic simulation (CaRIne Crystallography version 3.1). These results indicate that La3+ ions occupy the Na+ ions sites, which agrees very well with the experimental data. The optimal content of La3+ ions effectively increases crystallinity without agglomeration, contributing to efficient charge separation while preventing recombination between photogenerated electrons and holes. The highest photocatalytic H2 production of 2.9 mmol g-1cat.h-1 was obtained for a 2.0 mol% La-doped NaTaO3 sample, 1.8 times-higher than the non-doped NaTaO3. The photocatalytic activity of water splitting on the photocatalyst HW-derived were compared with those prepared by conventional sol-gel samples made using ethanol as a solvent (ET-derived). The H2 evolution of the HW-derived sample is about 1.65 times higher than ET-derived sample. Compared to the conventional sol-gel method, the H2O2-assisted sol-gel route produced La-doped NaTaO3 with good crystallinity. These materials exhibited higher photocatalytic activity for the HW-derived samples in water splitting than the ET-derived produced material. The activity of the sample was able to be increased 10-fold by depositing nickel nanoparticles (NPs) as a cocatalyst on the surface of the La0.02Na0.98TaO3. The possible mechanisms of H2 evolution from pure water and from aqueous methanol solutions using nickel in three states (i.e. Ni metal, NiO oxide, and Ni/NiO core/shell)-La0.02Na00.98TaO3, are discussed systematically. It is clearly shown that the activity of hydrogen generation from pure water is in the sequence: Ni/NiO > NiO >Ni, whereas the activity sequence with respect to aqueous methanol is: Ni > Ni/NiO > NiO. In this work, a novel bimetallic Pd/NiO core/shell nanoparticles (NPs) was also deposited on La0.02Na0.98TaO3 photocatalyst using an impregnation method with heat treatment at low temperature. The Pd/NiO core/shell NPs were synthesized by controlling the coating of NiO on Pd NPs. A possible synthesis mechanism for Pd/NiO NPs on La0.02Na0.98TaO3 is proposed. The Pd NPs show higher hydrogen production from aqueous methanol solutions than do the Pd/NiO core/shells. In contrast, Pd NPs loaded on La0.02Na0.98TaO3 show negligible activity from pure water, due to rapid water formation. The effect of the NiO shell thickness on photocatalytic activity is discussed. The shell thickness increases with the amount of nickel. Pd/NiO core/shells (1 nm thick) with 0.1 wt% palladium and 0.2 wt% nickel, displayed the highest hydrogen evolution i.e. 3.42 mmol g-1h-1 and 26.2 mmol g-1h-1 from pure water and aqueous methanol solutions, respectively. The hydrogen evolution from aqueous methanol solutions was greatly enhanced by adding electron donors as sacrificial reagents. The recombination is interrupted by the effective capture of the holes by methanol acting as a sacrificial reagent, thereby leading to higher hydrogen evolution. However, the competition between the recombination and the charge-transfer reaction occurs in pure water leading to a possible back reaction between H2 and O2 on the photocatalyst’s surface. Hydrogen generation from pure water is in sequence: Pd/NiO > Pd, whereas the activity sequence with respect to aqueous methanol is: Pd > Pd/NiO. Metallic Ni and Pd present the most active sites favoring the formation of hydrogen from aqueous methanol. The NiO coated Ni and Pd NPs suppresses the O2 photo-reduction and/or promotes the H2O photo-reduction. The core-shell Ni/NiO and Pd/NiO NPs are of great significance in water splitting hydrogen production, thus Ni/NiO and Pd/NiO core-shell nanoparticles loaded on La0.02Na0.98TaO3 are very promising candidates for photocatalytic hydrogen production either from either pure water or aqueous methanol solutions. The NaTaO3 nanoparticles produced by this facile, environmentally friendly ‘green process’ have better crystallinity, smaller size and higher photocatalytic activity.

Table of Content Abstract i Acknowledgements vii Table of Content ix List of Table xii List of Scheme xiii List of Figure xiv Organization of Dissertation xviii Chapter 1. Introduction 1 1.1. Photocatalysis 2 1.2. Basic principles of semiconductor photocatalytic hydrogen production 4 1.3. Elements constructing photocatalyst materials 8 1.4. Wide band gab photocatalyst for water splitting under UV irradiation 10 1.4.1. Group 4 metal oxides with d0 electronic configuration 10 1.4.2. Group 5 metal oxides with d0 electronic configuration 13 1.4.3. Tantalum Oxide and Tantalates 15 1.5. Synthesis of semiconductor photocatalyst 19 1.5.1. Solid state reaction route 19 1.5.2. Sol-gel synthesis route 21 1.5.3. Hydrothermal synthesis route 26 1.5.4. Green approach H2O2-assisted route 27 1.5.5. Deposition of active component on the photocatalyst 29 1.5.6. Steps in impregnation of the active component 30 1.6. Approaches for efficient photogenerated charge separation. 32 1.6.1. Photocatalytic H2 evolution in sacrificial systems 32 1.6.2. Effect of metal and nonmetal ion doping 37 1.6.3. Effect of cocatalyst 39 1.6.4. Effect of synthesis approach 47 1.6.5. Effect of reaction conditions. 47 1.7. Photocatalytic activity 49 1.8. Electrochemistry of Semiconductors 50 Chapter 2. Review on the Synthesis and Properties of NaTaO3 55 2.1. Electronic structures and optical properties of NaTaO3 56 2.2. Highly efficient water splitting into H2 and O2 on NaTaO3 photocatalysts under UV light irradiation 57 2.3. An overview of Fabrication of La-doped NaTaO3 Photocatalysts 59 2.3.1. Fabrication of NaTaO3 photocatalysts by solid-state reaction (SSR) methods 60 2.3.2. Fabrication of NaTaO3 photocatalysts by Hydrothermal methods 63 2.3.3. Fabrication of NaTaO3 photocatalysts by sol-gel methods 66 2.3.4. Fabrication of NaTaO3 photocatalysts by flux methods 68 2.3.5. Fabrication of NaTaO3 photocatalysts by microwave methods 70 2.3.6. Fabrication of NaTaO3 photocatalysts by low temperature methods 73 2.4. H2O2 assisted sol-gel strategy for synthesizing of La-doped NaTaO3 75 2.5. Research objectives 77 2.6. Outline of research work 77 Chapter 3. Experiment and Characterization 79 3.1. Experiment 79 3.1.1. Chemicals 79 3.1.2. Preparation of La-doped NaTaO3 79 3.1.3. Preparation of Nickel loaded on La-doped NaTaO3 81 3.1.4. Preparation of Pd and Pd/NiO loaded on La0.02Na0.98TaO3 81 3.2. Catalyst Characterization 83 3.2.1. X-ray diffraction analysis (XRD) 83 3.2.2. Spectroscopy electron microscopy analysis (SEM) 83 3.2.3. Transmission electron microscopy analysis (TEM) 83 3.2.4. UV absorptions analysis (UV) 84 3.2.5. BET analysis 85 3.2.6. X-ray Absorption Near Edge Spectroscopy (XANES) 85 Chapter 4. Green fabrication of La-doped NaTaO3 via H2O2 assisted sol-gel route 87 4.1. Motivation 87 4.2. Results and Discussions 90 4.2.1. Mechanism of Nanosized NaTaO3 Formation 90 4.2.2. Composition, Grain Sizes, and Crystallinity of LaxNa(1-x)TaO3 Photocatalyst 91 4.2.3. Effect of La3+ Substitution on the Morphology of NaTaO3 Photocatalyst 96 4.2.4. Verification of Lanthanum Substitution 101 4.2.5. Photoabsorbance Property 104 4.2.6. Effect of synthesis method on photocatalytic activities under UV light irradiation 105 4.2.7. Effect of La3+ Substitution on the Photocatalytic Activities under UV light irradiation 105 4.3. Summary 109 Chapter 5. Photocatalytic hydrogen production on nickel-loaded LaxNa(1-x)TaO3 111 5.1. Motivation 111 5.2. Results and Discussions 114 5.2.1. Formation of the nickel-loaded LaxNa(1-x)TaO3 nanoparticles 114 5.2.2. Grain Sizes, and crystallinity of nickel-loaded LaxNa(1-x)TaO3 photocatalyst 116 5.2.3. Morphology of nickel-loaded La0.02Na0.98TaO3 Photocatalyst 116 5.2.4. Photoabsorbance Property 119 5.2.5. Photocatalytic activities under UV light irradiation 120 5.3. Summary 128 Chapter 6. Bimetallic Pd/NiO core-shell nanoparticle as cocatalyst of La0.02Na0.98TaO3 photocatalyst for hydrogen production 130 6.1. Motivation 130 6.2. Results and Discussions 131 6.2.1. The mechanism of formation of Pd/NiO/La0.02Na0.98TaO3 Photocatalyst 131 6.2.2. Morphology of Pd/NiO/La0.02Na0.98TaO3 Photocatalyst 133 6.2.3. Composition, Grain Sizes, and BET surface area of Pd/NiO-loaded La0.02Na0.98TaO3 photocatalyst 136 6.2.4. Formation of NiO shell on Pd NPs 138 6.2.5. Photoabsorbance Property 140 6.2.6. Photocatalytic activities under UV light irradiation 141 6.3. Summary 148 Chapter 7. Conclusions 149 Chapter 8. Future outlook 152 References 155 List of Research Papers Published 165 Conferences / Workshops Attended 165 List of Table Table 1 1 Photocatalytic activities of various layered perovskites and hydration numbers.56 12 Table 1 2 Photocatalytic decomposition of water over simple semiconductor catalysts in Na2CO3 solution or pure water.76 15 Table 1 3 Photocatalytic activities for water splitting on alkali tantalate photocatalysts66 16 Table 1 4 Photocatalytic water splitting on Sr2M2O7 (M = Nb, Ta) powder18 18 Table 1 5 Effect of sacrificial reagent type in alcohol series of photocatalytic on H2 evolution activity of the mesoporous Pt/TiO2 photocatalyst 33 Table 1 6 Comparison of hydrogen generation over various metal-photocatalysta 34 Table 2 1 Water splitting of NaTaO3 photocatalysts synthesis by different methods under UV ligh irradiation 62 Table 2 2 Water splitting of La-doped NaTaO3 photocatalysts synthesis by different methods under UV light irradiation 62 Table 2 3 H2 production on NaTaO3 photocatalysts synthesis by different methods under UV with methanol as sacrificial reagent 70 Table 2 4 H2 production on La-doped NaTaO3 photocatalysts synthesis from with sacrificial reagent under UV. 70 Table 4 1 Grain size, particle size, surface area, and band gap of NaTaO3 of various La doping levels 95 Table 5 1 Grain size, particle size, and band gap, and H2 evolution of LaxNa(1-x)TaO3 116 Table 6 1 Grain size, BET surface area, band gap, and H2 evolution of Pd:NiO-loaded La0.02Na0.98TaO3 138 List of Scheme Scheme 4 1 Schematic representation of nanosized NaTaO3 synthesized by H2O2-assisted sol-gel route: route (I) without doping, NaTaO3 grew into irregular shape; route (II) with La3+ doping, NaTaO3 had a very regular shape, high crystallinity and improve photocatalytic activity 90 Scheme 5 1 Schematic representation of nanocrystalline nickel-loaded LaxNa(1-x)TaO3 photocatalyst for water splitting reaction into hydrogen 113 Scheme 5 2 Mechanisms of H2 evolution over Ni metal, NiO, and Ni/NiO-loaded La0.02Na98TaO3 nanoparticles from pure water and aqueous methanol solution system under UV-irradiation. 124 Scheme 6 1Schematic illustration of preparation of nanocrystalline Pd/NiO-loaded La0.02Na0.98TaO3 photocatalyst for water splitting reaction into hydroge 132 List of Figure Figure 1 1 Schematic illustration of photocatalytic hydrogen production from organic pollutant and water 3 Figure 1 2 Schematic representation of a photoelectrochemical cell (PEC) in which the TiO2 electrode is connected with a Pt electrode. 1 5 Figure 1 3 Basic principle of semiconductor-based photocatalytic water splitting for hydrogen generation 6 Figure 1 4 Elements constructing heterogeneous photocatalysts21 9 Figure 1 5 Relationship between band structure of semiconductor and redox potentials of water splitting.21 11 Figure 1 6 Schematic structures of A2La2Ti3O10 (A: K, Rb)53 12 Figure 1 7 Schematic mechanism for the water splitting by A2La2Ti3O10.53 13 Figure 1 8 Water splitting over K4Nb6O17 photocatalyst with layered structure.21 14 Figure 1 9 Band gap structure of K4Ce2M10O30 (M = Ta, Nb) and comparison with redox couples for photocatalytic production of H2 and O2 from water.66 14 Figure 1 10 Band structures of alkali tantalate photocatalysts and NiO co-catalyst.62 17 Figure 1 11 Band structures of Sr2M2O7 (M = Nb and Ta) photocatalysts and NiO cocatalyst.14 19 Figure 1 12 H2 or O2 evolution reaction in the presence of sacrificial reagents-half reactions of water splitting.21 36 Figure 1 13 Processes of charge transfer between host photocatalyst and cocatalyst. 40 Figure 1 14 HR-TEM images of GaN:ZnO loaded with photodeposited Rh and Rh/Cr2O3 (core/shell) nanoparticle. 169 45 Figure 1 15 Mechanism of overall water splitting on two cocatalyst. 46 Figure 1 16 a) Generation of bands in solids from atomic orbitals of isolated atoms; b) Diagram of the energy levels of an intrinsic semiconductor; c) the energy levels of an n-type semiconductor; (d) a p-type semiconductor; e). effect of varying the applied potential (E) on the band edges in the interior of an n-type semiconductor, E > Efb; f) band bending for an n-type semiconductor (1) and a p-type semiconductor (2) in equilibrium with an electrolyte; g) effect of varying the applied potential (E) on the band edges in the interior of a p-type semiconductor, E < Efb.180 51 Figure 2 1 Crystal structure in polyhedron model for (a) cubic and (b) orthorhombic NaTaO3.187 57 Figure 2 2 Crystal and energy structures of alkali tantalate photocatalysts.21, 62 58 Figure 2 3 (A) Transmittance electron microscope image and (B) energy dispersive X-ray spectra of NiO(0.2 wt%)/NaTaO3:La photocatalyst. Points (a)–(e) in the TEM image indicate the analysis points of EDS.24 61 Figure 2 4 Scanning electron microscope images of NaTaO3 synthesis by (a) Li and Zang.184 ; and (b) Liu at al.179 63 Figure 2 5 A: XRD patterns of the as-prepared samples at 140 °C for 12 h, with different NaOH concentrations (a) 0.25 M, (b) 0.50 M, and (c) 0.75 M. B: XRD patterns of samples produced by hydrothermal method at different temperatures (a, b, c, d and e are the samples prepared by hydrothermal method under 60, 80, 100, 120, and 140 °C for 12 h, respectively)184 64 Figure 2 6 SEM images of the NaTaO3 powders: (a) SS; (b) SG. TEM images of the NaTaO3 powders: (c) SG; (d) SS. The upper and lower insets of the figures show the lattice fringe and the selected area electron diffraction (SAED) pattern, respectively.196 67 Figure 2 7 XRD patterns of 2% La-doped NaTaO3 synthesized by SSR (a) and using a Na2SO4/K2SO4 flux at 900 oC for 1 h for NaTaO3:flux ratios of (b) 1:1, (c) 1:2 and (d) 1:3; and also for a reaction time of 0.5 h for NaTaO3:flux ratios (e) 1:1, (f) 1:2 and (g) 1:3; and SEM of La-doped NaTaO3 of flux methods at 900 oC and 1 h for NaTaO3:flux ratios of 1:2.4.115 69 Figure 2 8 (a) The TEM images of samples by MW method (the inset of picture the SEM image of the MW sample) ; and (b) SEM images of samples by SS R method.63 72 Figure 2 9 (a): SEM image of the as-prepared NaTaO3 powder. The inset shows the schematic crystal structure of NaTaO3 with a cubic symmetry; (b) XRD pattern of the as- prepared NaTaO3 powder.63 74 Figure 3 1 Schematic diagram of preparation of La-doped NaTaO3 80 Figure 3 2 Schematic diagram of photocatalytic reaction 82 Figure 3 3 Diffuse reflectance spectra of NaTaO3 photocatalysts 85 Figure 4 1 a) XRD patterns of NaTaO3 at various amounts of La doping; b) an enlarged view of the (200) peak 91 Figure 4 2 XRD patterns of La0.02Na0.98TaO3 photocatalysts. a) HW-derived sample; b) ET-derived sample. 92 Figure 4 3 Structure of metal complexes. a) Metal-peroxo complex; b) Metal-methoxide complex 93 Figure 4 4 SEM images: a) NaTaO3 and b) La-doped NaTaO3 photocatalyst. 96 Figure 4 5 TEM Images : a) NaTaO3; (b-d) LaxNa(1-x)TaO3 (x = 0.005, 0.02 and 0.08) 97 Figure 4 6 TEM Images : a) HW-derived of La0.02Na0.98TaO3 and b) high magnification; c) ET-derived of La0.02Na0.98TaO3 and d) high magnification. 98 Figure 4 7 HRTEM Images: a) pure NaTaO3; b) La-doped NaTaO3; SAED of c) pure NaTaO3; d) LaxNa(1-x)TaO3 (x = 0.02 ). 99 Figure 4 8 (a) Orthorhombic perovskite-like NaTaO3 structures; (b) Different side shows representations of TaO6 octahedral; (c & d) Cationic distribution of NaTaO3 observed by CaRIne crystallography program 3.1 for ideal XRD patterns. 101 Figure 4 9 Intensity ratios of (I020/I200) peaks for NaTaO3 and La-doped NaTaO3, a) calculated from XRD experiment data; and (b & c) derived from CaRIne crystallography program. 102 Figure 4 10 Cell parameters of the orthorhombic NaTaO3 crystal, taken from the Fullprof software at various amounts of La doping levels. 103 Figure 4 11 Diffuse reflectance spectra of NaTaO3 photocatalysts at various amounts of La doping levels. 104 Figure 4 12 Average H2 evolution rate of NaTaO3 at various amounts of La doping levels and an inserted picture of H2 evolution rate for 7 h irradiation. Reactant solution: 1.5 L, 10 vol % of aqueous methanol solution, catalyst: 0.5 g, inner irradiation cell made of quartz, under UV- light (400W high-pressure Hg lamp). 106 Figure 4 13 Time course of hydrogen evolution on the NaTaO3 at 2 mol% La doping. Reactant solution: 1.5 L, 10 vol % of aqueous methanol solution, catalyst: 0.5 g, under UV- light (400W Hg lamp). The reaction was continued for 21 h irradiation, with evacuation every 7 h. 108 Figure 5 1 XRD patterns of LaxNa(1-x)TaO3. a) at various amounts of La doping with Ni = 0.2 wt% for non-doped and 0.3 wt% for LaxNa(1-x)TaO3; b) an enlarged view of the (200) peak. 115 Figure 5 2 HRTEM Images of nickel-loaded La0.02Na0.98TaO3 (HW-derived): a) HRTEM and SAED pattern (insert) ; b) Ni metal; c) Ni/NiO core shell; d) Ni/NiO core shell with 2.0 wt% loading. 117 Figure 5 3 Ni K-edge X-ray absorption near-edge structure (XANES) spectra of nickel/La0.02Na0.98TaO3: a) Ni (fresh); b) Ni (used); c) NiO (fresh); d) NiO (used); e) Ni/NiO (fresh); f) Ni/NiO (used); g) Ni-foil and h) NiO as references. 118 Figure 5 4 Diffuse reflectance spectra of nickel-loaded LaxNa1-xTaO3 at various amounts of La doping levels ( x = 0 – 0.08), nickel = 0.2 wt% for non-doped and 0.3 wt% for La-doped NaTaO3 120 Figure 5 5 Average H2 evolution on nickel-loaded La0.02Na0.98TaO3 at various amounts of nickel loading levels and insert picture: LaxNa1-xTaO3 at (x = 0 – 0.08) with nickel 0.2 wt% for non-doped and 0.3 wt% for doped sample. 121 Figure 5 6 Photocatalytic activity on different nickel state-La0.02Na0.98TaO3; a) from pure water (1.5 L, catalyst: 0.5 g); b) from methanol aqueous solution (1.5 L, 10 vol% of aqueous methanol solution, catalyst: 0.5 g) under UV- light (400W Hg lamp). 123 Figure 5 7 Time course of hydrogen evolution on the Ni/NiO core/shell-loaded La0.02Na0.98TaO3 at 0.3 wt% nickel loading. Reactant solution: 1.5 L, 10 vol% of aqueous methanol solution, catalyst: 0.5 g, under UV- light (400W Hg lamp). 127 Figure 6 1 High resolution (HRTEM) images of Pd/NiO core/shell NPs on La0.02Na0.98TaO3 133 Figure 6 2 High resolution line-scan EDS of Pd/NiO core/shell nanoparticles on La0.02Na0.98TaO3 134 Figure 6 3 HRTEM images of Pd (a and b) and Pd/NiO core/shell structures nanoparticles (c and d) on La0.02Na0.98TaO3 135 Figure 6 4 Particle size distribution for (a) Pd and (b) Pd/NiO clusters, determined by counting deposits in a large number of TEM micrographs. 136 Figure 6 5 XRD patterns of La0.02Na0.98TaO3 photocatalysts at different ratios of Pd:NiO 137 Figure 6 6 HRTEM image of Pd/NiO-loaded La0.02Na0.98TaO3 at different shell thickness 139 Figure 6 7 Diffuse reflectance spectra of Pd/NiO NPs on La0.02Na0.98TaO3 at different ratio of Pd/NiO. 140 Figure 6 8 Average H2 evolution on Pd/NiO-loaded La0.02Na0.98TaO3 at various amounts of Pd/NiO NPs ratios ; reactant solution: 1.5 L, 10 vol% of aqueous methanol solution, catalyst: 0.5 g, under UV-light (400W Hg lamp), reaction during 7 h. 142 Figure 6 9 Photocatalytic activity on La0.02Na0.98TaO3 from pure water at Pd 0.1 wt% and different amount of NiO (1.5 L, catalyst: 0.5 g) under UV- light 400W Hg lamp. 143 Figure 6 10 Photocatalytic activity on La0.02Na0.98TaO3 from methanol aqueous solution: a) at different amount of Pd loading; b) at Pd 0.1 wt% and different amount of NiO; (1.5 L, 10 vol% of aqueous methanol solution, catalyst: 0.5 g) under UV-light (400W Hg lamp). 146 Figure 6 11 Time course of hydrogen evolution on the Pd/NiO NPs La0.02Na0.98TaO3 at 0.1:0.2 wt% Pd/NiO loading. Reactant solution: 1.5 L, 10 vol% of aqueous methanol solution, catalyst: 0.5 g, under UV- light (400W Hg lamp). 147 Figure 8 1 Schematic illustrated of charge carrier separation on cocatalyst-loaded graphene-La-N-doped NaTaO3 photocatalyst for H2 production under visible light irradiation. 154

1. A. Fujishima and K. Honda, Nature 1972, 238, 37.
2. S. S. Mao and X. Chen, International Journal of Energy Research, 2007, 31, 619-636.
3. A. Mills and S. Le Hunte, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 1-35.
4. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol 2000, c 1, 1.
5. www.apra-europe.org/dateien/advertisment/Photocatalyst.pdf.
6. A. Kudo, Catalysis Surveys from Asia, 2003, 7, 31-38.
7. J. M. Herrmann, C. Guillard and P. Pichat, Catalysis Today, 1993, 17, 7-20.
8. M. R. Hoffmann, S. T. Martin, W.Choi and D. W. Bahnemannt, Chem. Rev. , 1995, 95.
9. J. Yu, Y. Hai and M. Jaroniec, Journal of Colloid and Interface Science, 2011, 357, 223-228.
10. L. S. Al-Mazroai, M. Bowker, P. Davies, A. Dickinson, J. Greaves, D. James and L. Millard, Catalysis Today, 2007, 122, 46-50.
11. A. Patsoura, D. I. Kondarides and X. E. Verykios, Catalysis Today 2007, 124, 94-102.
12. M. Antoniadou and P. Lianos, Journal of Photochemistry and Photobiology A: Chemistry 2009, 2004, 69-74.
13. A. Kudo, K. Domen, K. Maruya and T. Onishi, Chemical Physics Letters, 1987, 133, 517-519.
14. A. Kudo, H. Kato and S. Nakagawa, The Journal of Physical Chemistry B, 1999, 104, 571-575.
15. A. Kudo, A. Tanaka, K. Domen and T. Onishi, Journal of Catalysis, 1988, 111, 296-301.
16. A. J. Bard, J Photochem 1979, 10, 59-75.
17. A. J. Bard, The Journal of Physical Chemistry, 1982, 86, 172-177.
18. A. J. Bard and M. A. Fox, Accounts of Chemical Research, 1995, 28, 141-145.
19. K. Maeda, K. Teramura and K. Domen, Catal Surv Asia 2007, 11, 145-157.
20. N. Serpone, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 104, 1-12.
21. A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253-278.
22. H.-J. Choi and M. Kang, International Journal of Hydrogen Energy, 2007, 32, 3841-3848.
23. J. Tauc, A. Menth and D. L. Wood, Physical Review Letters, 1970, 25, 749.
24. H. Kato, K. Asakura and A. Kudo, Journal of the American Chemical Society, 2003, 125, 3082-3089.
25. J. Zhu and M. Zäch, Current Opinion in Colloid & Interface Science, 2009, 14, 260-269.
26. S. Sato and J. M. White, Chem. Phys. Lett.,, 1980, 72, 83.
27. S. Sato and J. M. White, Chemical Physics Letters, 1980, 72, 83-86.
28. K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya and T. Onishi, J. Chem. Soc., Chem. Commun., , 1986, 356-359.
29. S. Ikeda, M. Hara, J. N. Kondo, K. Domen, H. Takahashi, T. Okubo and M. Kakihana, Chemistry of Materials, 1998, 10, 72-77.
30. K. Sayama and H. Arakawa, The Journal of Physical Chemistry, 1993, 97, 531-533.
31. J. Sato, N. Saito, H. Nishiyama and Y. Inoue, The Journal of Physical Chemistry B, 2001, 105, 6061-6063.
32. A. Galińska and J. Walendziewski, Energy & Fuels, 2005, 19, 1143-1147.
33. J. J. Zou, H. He, L. Cui and H. Y. Du, International Journal of Hydrogen Energy, 2007, 32, 1762-1770.
34. E. Yesodharan, S. Yesodharan and M. Grätzel, Solar Energy Materials, 10, 287-302.
35. H.-Y. Lin and Y.-S. Chang, International Journal of Hydrogen Energy, 2010, 35, 8463-8471.
36. H.-Y. Lin, H.-C. Yang and W.-L. Wang, Catalysis Today, 2011, In Press, Corrected Proof.
37. T. Puangpetch, S. Chavadej and T. Sreethawong, Energy Conversion and Management, 2011, 52, 2256-2261.
38. K. Domen, S. Naito, T. Onishi and K. Tamaru, Chemical Physics Letters, 1982, 92, 433-434.
39. K. Domen, A. Kudo and T. Onishi, Journal of Catalysis, 1986, 102, 92-98.
40. L. M. T. Martínez, R. Gómez, O. V. Cuchillo, I. Juárez-Ramírez, A. C. López and F. J. A. Sandoval, Catalysis Communications, 2010, 12, 268-272.
41. J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen and Y. Inoue, Journal of the American Chemical Society, 2005, 127, 4150-4151.
42. K. Maeda, K. Teramura and K. Domen, Journal of Catalysis, 2008, 254, 198-204.
43. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue and K. Domen, Angew. Chem., Int. Ed, 2006, 45, 7806.
44. A. Iwase, H. Kato and A. Kudo, Chem. Lett., 2005, 34, 946.
45. K. Yamaguty and S. Sato, J. Chem. SOC.,F araday Trans. I 1985, 81, 1237-1246.
46. K. Sayama and H. Arakawa, ChemInform, 1997, 28, no-no.
47. A. J. Nozik, Applied Physics Letters, 1977, 30, 567-569.
48. H. Jeong, T. Kim, D. Kim and K. Kim, International Journal of Hydrogen Energy, 2006, 31, 1142-1146.
49. Y. G. Ko and W. Y. Lee, Catal. Lett., 2002, 83, 157-160.
50. J. Kim, D. Hwang, H. Kim, S. Bae, J. Lee, W. Li and S. Oh, Topics in Catalysis, 2005, 35, 295-303.
51. V. Reddy, D. Hwang and J. Lee, Korean Journal of Chemical Engineering, 2003, 20, 1026-1029.
52. T. Takata, A. Tanaka, M. Hara, J. N. Kondo and K. Domen, Catalysis Today, 1998, 44, 17-26.
53. M. Kitano and M. Hara, J. Mater. Chem.,, 2010
20, 627-641.
54. Y. Inoue, O. Hayashi and K. Sato, Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2277-2282.
55. A. Kameyama, K. Domen, K.-I. Maruya, T. Endo and T. Onishi, Journal of Molecular Catalysis, 1990, 58, 205-213.
56. M. Koinuma, H. Seki and Y. Matsumoto, Journal of Electroanalytical Chemistry, 2002, 531, 81-85.
57. W. L. Wang, H. C. Yang and H. Y. Lin, The 13th Asia Pacific Confederation of APCChE 2010, Chemical Engineering Congress, 2010.
58. J. Choi, S. Y. Ryu, W. Balcerski, T. K. Lee and M. R. Hoffmann, Journal of Materials Chemistry, 2008, 18, 2371-2378.
59. K. Nakajima, D. Lu, M. Hara, K. Domen and J. N. Kondo, in Studies in Surface Science and Catalysis, eds. N. Z. J. Cejka and P. Nachtigall, Elsevier, 2005, vol. Volume 158, Part 2, pp. 1477-1484.
60. H. W. Kang, E. J. Kim and S. B. Park, International Journal of Photoenergy, 2008, 8.
61. J. Xu, D. Xue and C. Yan, Materials Letters, 2005, 59, 2920-2922.
62. H. Kato and A. Kudo, The Journal of Physical Chemistry B, 2001, 105, 4285-4292.
63. S. C. Yan, Z. Q. Wang, Z. S. Li and Z. G. Zou, Solid State Ionics, 2009, 180, 1539-1542.
64. C. Zhou, G. Chen, Y. Li, H. Zhang and J. Pei, International Journal of Hydrogen Energy, 2009, 34, 2113-2120.
65. K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K.-i. Maruya and T. Onishi, Journal of the Chemical Society, Chemical Communications, 1986, 356-357.
66. M. Tian, W. Shangguan, J. Yuan, L. Jiang, M. Chen, J. Shi, Z. Ouyang and S. Wang, Applied Catalysis A: General, 2006, 309, 76-84.
67. S. Wenfeng, Science and Technology of Advanced Materials, 2007, 8, 76.
68. K. Sayama and H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry, 1994, 77, 243-247.
69. T. Sreethawong, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa, Journal of Molecular Catalysis A: Chemical, 2005, 235, 1-11.
70. H. Kato and A. Kudo, Chemical Physics Letters, 1998, 295, 487-492.
71. K. Sayama, H. Arakawa and K. Domen, Catalysis Today, 1996, 28, 175-182.
72. H. Kato and A. Kudo, Catalysis Letters, 1999, 58, 153-155.
73. A. Kudo, H. Kato, S. Nakagawa and J. Phys. Chem. B, 2000, 104, 571.
74. D. W. Hwang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim and J. S. Lee, Journal of Catalysis, 2000, 193, 40-48.
75. R. Anthony and West, Solid State Chemistry and its Applications, Wiley and Sons, 2005.
76. en.wikipedia.org/wiki/Solid_state_reaction_rou.
77. B. Delmon, Journal of Thermal Analysis and Calorimetry, 2007, 90, 49-65.
78. J. P. Guha, Journal of Solid State Chemistry, 1980, 34, 17-22.
79. J. K. Plourde, D. F. Linn, H. M. O'Bryan and J. Thomson, Journal of the American Ceramic Society, 1975, 58, 418-420.
80. S. Sakka and H. Kozuka, Hanbook of sol-gel science and technology: processing, characterization, and aapplication, Kluwer Academic Publishers, United State of America, 2005.
81. J. Livage, Current Opinion in Solid State and Materials Science, 1997, 2, 132-138.
82. Y. Yuan, X. Zhang, L. Liu, X. Jiang, J. Lv, Z. Li and Z. Zou, International Journal of Hydrogen Energy, 2008, 33, 5941-5946.
83. D. Jing, Y. Zhang and L. Guo, Chemical Physics Letters, 2005, 415, 74-78.
84. T. K. Tseng, Y. S. Lin, Y. J. Chen and H. Chu, International Journal of Molecular Sciences, 2010, 11, 2336-2361.
85. L. L. Hench and J. K. West, Chemical Reviews, 1990, 90, 33-72.
86. L. C. Klein, Annual Review of Materials Science, 1993, 23, 437-452.
87. M. Nogami and Y. Abe, Journal of Sol-Gel Science and Technology, 1997, 9, 139-143.
88. J. Liqiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, D. Yaoguo and F. Honggang, Solar Energy Materials and Solar Cells, 2003, 79, 133-151.
89. Y. Li, G. Chen, H. Zhang and Z. Lv, International Journal of Hydrogen Energy, 2010, 35, 2652-2656.
90. K. Sridhar, Current Science 2003, 85, 1730-1734.
91. A. Rabenau, Angewandte Chemie International Edition in English, 1985, 24, 1026-1040.
92. S. Komarneni, M. C. D'Arrigo, C. Leonelli, G. C. Pellacani and H. Katsuki, Journal of the American Ceramic Society, 1998, 81, 3041-3043.
93. N. Zhang, X. Fu and Y.-J. Xu, Journal of Materials Chemistry, 2011, 21, 8152-8158.
94. H. Zhang, D. Wang, B. Yang and H. Möhwald, Journal of the American Chemical Society, 2006, 128, 10171-10180.
95. D. Bayot, B. Tinant and M. Devillers, Catalysis Today, 2003, 78, 439-447.
96. J. Liao, L. Shi, S. Yuan, Y. Zhao and J. Fang, The Journal of Physical Chemistry C, 2009, 113, 18778-18783.
97. Y. B. Ryu, M. S. Lee, E. D. Jeong, H. G. Kim, W. Y. Jung, S. H. Baek, G.-D. Lee, S. S. Park and S.-S. Hong, Catalysis Today, 2007, 124, 88-93.
98. C. Ooka, H. Yoshida, S. Takeuchi, M. Maekawa, Z. Yamada and T. Hattori, Catalysis Communications, 2004, 5, 49-54.
99. C. Ooka, H. Yoshida, M. Horio, K. Suzuki and T. Hattori, Applied Catalysis B: Environmental, 2003, 41, 313-321.
100. J. T. Richardson, Principles of Catalyst Development, Plenum Press, New York, 1989.
101. G. J. K. Acres, A. J. Bird, J. W. Jenkins and F. King, in Catalysis, pp. 1-30.
102. X. Carrier, E. Marceau and M. Che, Pure Appl. Chem, 2006, 78, 1039-1055.
103. J. S. Jang, S. H. Choi, H. G. Kim and J. S. Lee, The Journal of Physical Chemistry C, 2008, 112, 17200-17205.
104. G. R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89, 177-189.
105. K. Gurunathan, International Journal of Hydrogen Energy, 2004, 29, 933-940.
106. S. G. Lee, S. Lee and H.-I. Lee, Applied Catalysis A: General, 2001, 207, 173-181.
107. N.-L. Wu and M.-S. Lee, International Journal of Hydrogen Energy, 2004, 29, 1601-1605.
108. A. A. Nada, M. H. Barakat, H. A. Hamed, N. R. Mohamed and T. N. Veziroglu, International Journal of Hydrogen Energy, 2005, 30, 687-691.
109. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renewable and Sustainable Energy Reviews, 2007, 11, 401-425.
110. T. Sreethawong, T. Puangpetch, S. Chavadej and S. Yoshikawa, Journal of Power Sources, 2007, 165, 861-869.
111. Y. Li, G. Lu and S. Li, Chemosphere, 2003, 52, 843-850.
112. W. C. Lin, W. D. Yang, I. L. Huang, T. S. Wu and Z. J. Chung, Energy & Fuels, 2009, 23, 2192-2196.
113. H.-Y. Lin, T.-H. Lee and C.-Y. Sie, International Journal of Hydrogen Energy, 2008, 33, 4055-4063.
114. D. G. Porob and P. A. Maggard, Journal of Solid State Chemistry, 2006, 179, 1727-1732.
115. T. Sreethawong and S. Yoshikawa, Catalysis Communications, 2005, 6, 661-668.
116. H. Yi, T. Peng, D. Ke, D. Ke, L. Zan and C. Yan, International Journal of Hydrogen Energy, 2008, 33, 672-678.
117. Z. Jin, X. Zhang, Y. Li, S. Li and G. Lu, Catalysis Communications, 2007, 8, 1267-1273.
118. J. Bandara, C. P. K. Udawatta and C. S. K. Rajapakse, Photochemical & Photobiological Sciences, 2005, 4, 857-861.
119. A. Galinska and J. Walendziewski, Energy & Fuels, 2005, 19, 1143-1147.
120. S. Xu and D. D. Sun, International Journal of Hydrogen Energy, 2009, 34, 6096-6104.
121. A. Hameed and M. A. Gondal, Journal of Molecular Catalysis A: Chemical, 2005, 233, 35-41.
122. T. Kawai and T. Sakata, Journal of the Chemical Society, Chemical Communications, 1980, 694-695.
123. T. Sakata and T. Kawai, Chemical Physics Letters, 1981, 80, 341-344.
124. K. Hara, K. Sayama and H. Arakawa, Applied Catalysis A: General, 1999, 189, 127-137.
125. R. Abe, K. Sayama and H. Arakawa, Chemical Physics Letters, 2003, 371, 360-364.
126. H. Kato and A. Kudo, The Journal of Physical Chemistry B, 2002, 106, 5029-5034.
127. J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Journal of Solid State Chemistry, 2006, 179, 3704-3708.
128. D. W. Hwang, H. G. Kim, J. S. Lee, J. Kim, W. Li and S. H. Oh, The Journal of Physical Chemistry B, 2005, 109, 2093-2102.
129. X. Chen, S. Shen, L. Guo and S. S. Mao, Chemical Reviews, 2010, 110, 6503-6570.
130. S. Ikeda, A. Tanaka, K. Shinohara, M. Hara, J. N. Kondo, K.-i. Maruya and K. Domen, Microporous Materials, 1997, 9, 253-258.
131. W. Sun, S. Zhang, Z. Liu, C. Wang and Z. Mao, International Journal of Hydrogen Energy, 2008, 33, 1112-1117.
132. D. Jing and L. Guo, The Journal of Physical Chemistry C, 2007, 111, 13437-13441.
133. A. Iwase, H. Kato and A. Kudo, ChemSusChem, 2009, 2, 873-877.
134. Z. Zou and H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 145-162.
135. Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature, 2001, 414, 625-632.
136. M. Yang, X. Huang, S. Yan, Z. Li, T. Yu and Z. Zou, Materials Chemistry and Physics, 2010, 121, 506-510.
137. T. Ishihara, H. Nishiguchi, K. Fukamachi and Y. Takita, The Journal of Physical Chemistry B, 1998, 103, 1-3.
138. S. Yin, K. Ihara, Y. Aita, M. Komatsu and T. Sato, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 105-114.
139. Y. Cong, J. Zhang, F. Chen and M. Anpo, The Journal of Physical Chemistry C, 2007, 111, 6976-6982.
140. J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, Journal of the American Chemical Society, 2009, 131, 12290-12297.
141. H. Fu, S. Zhang, L. Zhang and Y. Zhu, Materials Research Bulletin, 2008, 43, 864-872.
142. K. G. Kanade, J.-O. Baeg, B. B. Kale, S. Mi Lee, S.-J. Moon and K.-j. Kong, International Journal of Hydrogen Energy, 2007, 32, 4678-4684.
143. M. Matsumura, Y. Saho and H. Tsubomura, The Journal of Physical Chemistry, 1983, 87, 3807-3808.
144. J. S. Jang, D. J. Ham, N. Lakshminarasimhan, W. y. Choi and J. S. Lee, Applied Catalysis A: General, 2008, 346, 149-154.
145. S. Tabata, H. Nishida, Y. Masaki and K. Tabata, Catalysis Letters 1995, 34, 245-249.
146. M. Hara, J. Nunoshige, T. Takata, J. N. Kondo and K. Domen, Chemical Communications, 2003, 3000-3001.
147. C. C. Hu and H. Teng, Journal of Catalysis, 2010, 272, 1-8.
148. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai and Y. Wu, The Journal of Physical Chemistry B, 2006, 110, 20211-20216.
149. V. M. Daskalaki, M. Antoniadou, G. Li Puma, D. I. Kondarides and P. Lianos, Environmental Science & Technology, 2010.
150. Z. Jin, X. Zhang, G. Lu and S. Li, Journal of Molecular Catalysis A: Chemical, 2006, 259, 275-280.
151. O. Rosseler, M. V. Shankar, M. K.-L. Du, L. Schmidlin, N. Keller and V. Keller, Journal of Catalysis, 2010, 269, 179-190.
152. K. Sayama, K. Yase, H. Arakawa, K. Asakura, A. Tanaka, K. Domen and T. Onishi, Journal of Photochemistry and Photobiology A: Chemistry, 1998, 114, 125-135.
153. H. Tsubomura and H. Kobayashi, Critical Reviews in Solid State and Materials Sciences, 1993, 18, 261 - 326.
154. M. Sathish, B. Viswanathan and R. P. Viswanath, International Journal of Hydrogen Energy, 2006, 31, 891-898.
155. H. B. Michaelson, Journal of Applied Physics, 1977, 48, 4729-4733.
156. K. Shimura and H. Yoshida, Energy & Environmental Science, 2011.
157. B. Tian, C. Li, F. Gu and H. Jiang, Catalysis Communications 10 (2009) 925–929, 2009, 10, 925-929.
158. Y. Z. Yang, C. H. Chang and H. Idriss, Applied Catalysis B: Environmental, 2006, 67, 217-222.
159. D. Yamasita, T. Takata, M. Hara, J. N. Kondo and K. Domen, Solid State Ionics, 2004, 172, 591-595.
160. W. G. Peng, C. Tao, Z. GuoHua, Z. Xu and L. Can, Science in China Series B: Chemistry, 2008, 51, 97-100.
161. A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, V. K. Bukhtiyarov, A. E. Raevskaya, V. I. Litvin, S. Y. Kuchmiy, V. G. Ilyin and P. A. Manorik, Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 126-134.
162. K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, The Journal of Physical Chemistry, 1986, 90, 292-295.
163. J. M. Lehn and R. Ziessel, Proc Natl Acad Sci U S A, 1982, 79, 701-704.
164. M. Liu, W. You, Z. Lei, T. Takata, K. Domen and C. Li, Chinese Journal of Catalysis, 2006, 27, 556-558.
165. Y. Mizukoshi, K. Sato, T. J. Konno and N. Masahashi, Applied Catalysis B: Environmental, 2010, 94, 248-253.
166. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen, Nature, 2006, 440, 295-295.
167. K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue and K. Domen, The Journal of Physical Chemistry B, 2006, 110, 13107-13112.
168. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue and K. Domen, The Journal of Physical Chemistry C, 2007, 111, 7554-7560.
169. K. Maeda and K. Domen, in [Without Title], Springer Berlin / Heidelberg, 2011, pp. 1-25.
170. M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota, Y. Sakata, Y. Ikezawa and K. Domen, The Journal of Physical Chemistry C, 2009, 113, 10151-10157.
171. K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi and K. Domen, Angewandte Chemie International Edition, 2010, 49, 4096-4099.
172. Y. Yamashita, K. Yoshida, M. Kakihana, S. Uchida and T. Sato, Chemistry of Materials, 1998, 11, 61-66.
173. K. Domen, S. Naito, S. Soma, M. Onishi and K. Tamaru, J. Chem. Soc. Chem. Commun., 1980, 543-547.
174. Y. Liu, L. Xie, Y. Li, R. Yang, J. Qu, Y. Li and X. Li, Journal of Power Sources, 2008, 183, 701-707.
175. Y. Qin, G. Wang and Y. Wang, Catalysis Communications, 2007, 8, 926-930.
176. T. Takata and K. Domen, The Journal of Physical Chemistry C, 2009, 113, 19386-19388.
177. C. C. Hu and H. Teng, Applied Catalysis A: General, 2007, 331, 44-50.
178. Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura and K. Domen, ChemInform, 2007, 38, no-no.
179. J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, International Journal of Hydrogen Energy, 2007, 32, 2269-2272.
180. A. W. Bott, Current Separations 1998, 17, 87-91.
181. P. Schmuki, H. Bohni and J. A. Bardwell, Journal of The Electrochemical Society, 1995, 142, 1705-1712.
182. H. Kato and A. Kudo, Catalysis Today, 2003, 78, 561-569.
183. A. Kudo, International Journal of Hydrogen Energy, 2006, 31, 197-202.
184. X. Li and J. Zang, The Journal of Physical Chemistry C, 2009, 113, 19411-19418.
185. X. F. Zhou, Y. Chen, H. Mei, Z. L. Hu and Y. Q. Fan, Applied Surface Science, 2008, 255, 2803-2807.
186. H. Husin, H. M. Chen, W. N. Su, C. J. Pan, W. T. Chuang, H. S. Sheu and B. J. Hwang, Applied Catalysis B: Environmental, 2011, 102, 343-351.
187. Z. H. Li, G. Chen and J. W. Liu, Solid State Communications, 2007, 143, 295-299.
188. V. Shanker, S. L. Samal, G. K. Pradhan, C. Narayana and A. K. Ganguli, Solid State Sciences 11 (2009) 562–569, 2009, 11, 562-569.
189. B. J. Kennedy, A. K. Projosantoso and C. J. Howard, J. Phys. Condens. Matter, 1999, 11, 6319.
190. M. Wiegel, M. H. J. Emond, E. R. Stobbe and G. Blasse, Journal of Physics and Chemistry of Solids, 1994, 55, 773-778.
191. C. Perego and P. Villa, Catalysis Today, 1997, 34, 281-305.
192. Y. He, Y. F. Zhu and N. Z. Wu, Journal of Solid State Chemistry, 2004, 177, 3868-3872.
193. J. A. Nelson and M. J. Wagner, J. AM. CHEM. SOC 2003, 125, 332-333.
194. A. Kudo and H. Kato, Chemical Physics Letters, 2000, 331, 373-377.
195. A. Iwase, H. Kato, H. Okutomi and A. Kudo, Chemistry Letters 2004, 33, 1.
196. C. C. Hu and H. Teng, Applied Catalysis A: General, 2007, 331, 44-50.
197. S. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu and Y. T. Qian, AdV. Funct. Mater, 2003, 13, 63.
198. X. Yi and J. Li, Journal of Sol-Gel Science and Technology, 2010, 53, 480-484.
199. C. C. Hu, C. C. Tsai and H. Teng, Journal of the American Ceramic Society, 2009, 92, 460-466.
200. C. C. Hu, C. C. Tsai and H. Teng, Journal of the American Ceramic Society, 2009, 92, 460-466.
201. J. Ye, Z. Zou and A. Matsushita, International Journal of Hydrogen Energy, 2003, 28, 651-655.
202. K. J. Rao, B. Vaidhyanathan, M. Ganguli and P. A. Ramakrishnan, Chemistry of Materials, 1999, 11, 882-895.
203. K. J. Rao, B. Vaidhyanathan, M. Ganguli and P. A. Ramakrishnan, Chem. Mater., 1999, 11, 882.
204. D. Bayot and M. Devillers, Coordination Chemistry Reviews, 2006, 250, 2610-2626.
205. P. V. Kamat, The Journal of Physical Chemistry Letters, 2010, 1, 1018-1019.
206. B. Seger and P. V. Kamat, The Journal of Physical Chemistry C, 2009, 113, 18946-18952.
207. X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang and C. Li, The Journal of Physical Chemistry C, 2010, 114, 1963-1968.
208. Y. Ikuma and H. Bessho, International Journal of Hydrogen Energy, 2007, 32, 2689-2692.
209. C. Dinh, T. D. Nguyen, F. Kleitz and T. O. Do, ACS Nano, 2009, 3, 3737-3743.
210. A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika and T. Onishi, Journal of Catalysis, 1988, 111, 67-76.
211. U. G. Akpan and B. H. Hameed, Applied Catalysis A: General, 2010, 375, 1-11.
212. I. Atribak, I. Such Basáñez, A. Bueno López and A. García García, Catalysis Communications, 2007, 8, 478-482.
213. J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin and F. Honggang, Journal of Solid State Chemistry, 2004, 177, 3375-3382.
214. X. Wu, X. Ding, W. Qin, W. He and Z. Jiang, Journal of Hazardous Materials, 2006, 137, 192-197.
215. J. Z. Kong, A. D. Li, H. F. Zhai, Y. P. Gong, H. Li and D. Wu, Journal of Solid State Chemistry, 2009, 182, 2061-2067.
216. B. J. Hwang, C. J. Wang, C. H. Chen, Y. W. Tsai and M. Venkateswarlu, Journal of Power Sources, 2005, 146, 658-663.
217. G. Haxhillazi and H. Haeuseler, Journal of Solid State Chemistry, 2004, 177, 3045-3051.
218. R. Antiochia, S. Canepari and V. Carunchio, Transition Metal Chemistry, 1994, 19, 359-363.
219. X. Sun, K. Maeda, M. Le Faucheur, K. Teramura and K. Domen, Applied Catalysis A: General, 2007, 327, 114-121.
220. D. Ramírez, D. Silva, H. Gómez, G. Riveros, R. E. Marotti and E. A. Dalchiele, Solar Energy Materials and Solar Cells, 2007, 91, 1458-1461.
221. W. Y. Su, J. S. Huang and C. F. Lin, Journal of Crystal Growth, 2008, 310, 2806-2809.
222. A. L. Patterson, Physical Review, 1939, 56, 978.
223. R. D. Shannon, Acta Crystallographica Section A, 1976, 32, 751-767.
224. F. Azizi, A. Kahoul and A. Azizi, Journal of Alloys and Compounds, 2009, 484, 555-560.
225. L. Dong, G. Y. Xu and C. Shao, Journal of Optoelectronics and Advanced Materials, 2005, 7, 6.
226. H. J. Nam, T. Amemiaya, M. Murabayashi and K. Itoh, Res, Chem. Intermed., 2005, 31, 6.
227. J. S. Jang, U. A. Joshi and J. S. Lee, The Journal of Physical Chemistry C, 2007, 111, 13280-13287.
228. M. Choi, F. Oba and I. Tanaka, Physical Review B, 2008, 78, 014115.
229. B. Ma, F. Wen, H. Jiang, J. Yang, P. Ying and C. Li, Catalysis Letters, 2010, 134, 78-86.
230. A. Yamakata, T. Ishibashi and H. Onishi, J. Phys. Chem. B 2002, 106, 9122-9125.
231. H. Y. Lin, Y. F. Chen and Y. W. Chen, International Journal of Hydrogen Energy, 2007, 32, 86-92.
232. Y. Noda, B. Lee, K. Domen and J. N. Kondo, Chemistry of Materials, 2008, 20, 5361-5367.
233. W. Sun, S. Zhang, C. Wang, Z. Liu and Z. Mao, Catal Letter 2008, 123, 282–288.
234. A. Kudo, A. Tanaka, K. Domen, K. I. Maruya, K. I. Aika and T. Onishi, Journal of Catalysis, 1988, 111, 67-76.
235. Y. Chen, H. Yang, X. Liu and L. Guo, International Journal of Hydrogen Energy, 2010, 35, 7029-7035.
236. M. Wang, D.-j. Guo and H.-l. Li, Journal of Solid State Chemistry, 2005, 178, 1996-2000.
237. M. Bowker, Green Chemistry, 2011.
238. H. Husin, W. N. Su, H. M. Chen, C. J. Pan, S. H. Chang, J. Rick, W. T. Chuang, H. S. Sheu and B. J. Hwang, Green Chemistry, 2011.
239. H. O. Seo, J. Lee, K.-D. Kim, Y. Luo, N. K. Dey and Y. D. Kim, Surface and Interface Analysis, 2010, n/a-n/a.
240. K. Hansen, Journal of Applied Electrochemistry, 2008, 38, 591-595.
241. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo and H. Kato, Journal of Solid State Chemistry, 2004, 177, 4205-4212.
242. A. Mukherji, B. Seger, G. Q. Lu and L. Wang, ACS Nano, 2011, 5, 3483-3492.
243. F. Dong, H. Wang and Z. Wu, The Journal of Physical Chemistry C, 2009, 113, 16717-16723.
244. Z. Zongyan and et al., Journal of Physics D: Applied Physics, 2011, 44, 165401.

QR CODE