簡易檢索 / 詳目顯示

研究生: 江柏漢
Po-Han Chiang
論文名稱: 利用PZT聲波致動器驅動產生氣體非線性振動行為之探討
Finite-Amplitude Gas Oscillation Driven by PZT Acoustic Actuators
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 周振嘉
Chen-Chia Chou
陳國聲
Kuo-Shen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 83
中文關鍵詞: 非線性振動行為聲波致動器
外文關鍵詞: Acoustic, PZT
相關次數: 點閱:174下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在封閉圓管中, 強制管中氣體發生共振而產生非線性現象的行為研究, 在過去的文獻中都是利用機械式的傳動使管中氣體在低頻作動下發生共振而產生大振幅的聲壓。本論文建立了一微形化的聲波裝置, 使氣體能夠在高頻作動下發生共振, 以觀察管中氣體在高頻作動下的非線性行為。
    微形化聲波裝置, 其聲波源是利用PZT 壓電驅動器推動管中活塞使氣體擾動產生聲波, 由於壓電驅動器基於材料的特性會有遲滯現象的發生, 因此本論文用一直流電供應器供給PZT 壓電驅動器直流電壓使其在固定的週期電壓下伸長與縮短, 然後使用非接觸之光纖量測振動及位移感測器量測其週期性的伸長量, 因而可繪出本實驗所使用的PZT 壓電驅動器的遲滯迴圈。利用其遲滯迴圈對應PZT 動態行為下的監測電壓, 可繪出一與動態行程相似的位移波形。但是當壓電驅動器接上活塞後, 當PZT 發生振動時活塞的撓曲會使得位移感測器對於壓電驅動器動態位移的量測值, 隨著對活塞量測點的不同而有不同的位移。
    經由壓電驅動器在高頻下的作動可以使得管中氣體的共振頻率到達4000 Hz, 並產生166 dB 的聲壓, 其氣體的非線性現象大約是接近共振頻率(4000 Hz) 前後40 Hz 左右, 都可以觀察到有非線性現象的發生。當加大作用於PTZ 壓電驅動器的交流電場相對的會使得管中的聲壓變大, 當聲壓越大非線性的現象也就越為明顯, 其壓力對應作動頻率的共振曲線也會越不對稱。


    Forced nonlinear acoustic oscillations at the resonant frequency of closed tube are studied. The presented studies almost used mechanical transmission to drive
    the gas to resonate and produce high acoustic pressure at low resonant frequency in a closed tube. The thesis constructed a miniaturized acoustic device that drove the gas to resonate at high frequency in a close tube. So we could observe nonlinear acoustic oscillations at high frequency.
    The excitation source of the miniaturized acoustic device was PZT actuator. It animated a piston to cause gas perturbation to have sound wave. But the actuator has hysteresis phenomenon that associates with the material. So we uesed a DC volatge power supply to give the actuator periodic input. It would become long and short, then measured the periodic extension by MTI-2000 Fotonic Sensor and drew its’ hysteresis loop. The drawn sinusoidal wave was similar with actuator’s dynamic behavior by using monitor voltage to contrast with PZT’s hysteresis loop. When the actuator connected with a piston and vibrated, the piston had a bending moment that influenced the measured displacement sensor to appraise the actuator dynamic behavior. Accordingly, the displacement of each point of the piston was different.
    The actuator vibrated at the high frequency. The gas resonant frequency could arrive in 4000 Hz and produced 166 dB acoustic pressure in the closed tube. The nonlinear phenomenon would happen near the resonant frequency for 40 Hz. When the PZT had high exchange electric field, it could produce high acoustic pressure and nonlinear phenomenon would be more obvious in the tube. Additionally, the pressure and frequency resonance curve was more asymmetric.

    1 導論 1 1.1 前言及研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . 2 1.3 微形化聲波裝置簡介. . . . . . . . . . . . . . . . 5 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . 5 2 理論分析 7 2.1 振動理論. . . . . . . . . . . . . . . . . . . . . 7 2.1.1 自由振動. . . . . . . . . . . . . . . . . . 7 2.1.2 懸臂樑軸向振動. . . . . . . . . . . . . . .10 2.1.3 懸臂樑撓曲振動. . . . . . . . . . . . . . .12 2.2 壓電原理. . . . . . . . . . . . . . . . . . . . .18 2.2.1 壓電效應. . . . . . . . . . . . . . . . . .18 2.2.2 壓電方程式. . . . . . . . . . . . . . . . .20 2.2.3 壓電特性參數. . . . . . . . . . . . . . . .23 2.2.4 壓電材料. . . . . . . . . . . . . . . . . .24 2.3 聲學理論. . . . . . . . . . . . . . . . . . . . .25 2.4 線性波動方程式. . . . . . . . . . . . . . . . . .25 2.5 駐波方程式. . . . . . . . . . . . . . . . . . . .28 2.6 小結. . . . . . . . . . . . . . . . . . . . . . .31 3 實驗設備與量測儀 32 3.1 實驗設備. . . . . . . . . . . . . . . . . . . . .33 3.1.1 共振腔. . . . . . . . . . . . . . . . . . .33 3.1.2 聲波源. . . . . . . . . . . . . . . . . . .33 3.1.3 反射端. . . . . . . . . . . . . . . . . . .34 3.2 量測儀器. . . . . . . . . . . . . . . . . . . . .35 3.2.1 非接觸之光纖量測振動及位移感測器. . . . . .35 3.2.2 雷射位移儀表. . . . . . . . . . . . . . . .35 3.2.3 訊號產生器. . . . . . . . . . . . . . . . .35 3.2.4 功率放大器. . . . . . . . . . . . . . . . .35 3.2.5 直流供應器. . . . . . . . . . . . . . . . .36 3.2.6 壓力感測器. . . . . . . . . . . . . . . . .36 3.2.7 資料擷取系統. . . . . . . . . . . . . . . .36 3.3 實驗方法. . . . . . . . . . . . . . . . . . . . .37 3.4 小結. . . . . . . . . . . . . . . . . . . . . . .37 4 實驗結果與分析 39 4.1 實驗概述. . . . . . . . . . . . . . . . . . . . .40 4.2 PZT壓電驅動器之遲滯曲線量測. . . . . . . . . . . 41 4.3 PZT壓電驅動器動態量測. . . . . . . . . . . . . . 45 4.4 活塞所產生的撓曲對PZT 壓電驅動器動態量測的影響. .46 4.5 管中壓力對PZT 壓電驅動器行程的影響. . . . . . . .49 4.6 不同的壓力振幅對氣體非線性行為的影響. . . . .. .51 4.7 不同的振動頻率對氣體非線性行為的影響. . . . . . .51 4.8 小結. . . . . . . . . . . . . . . . . . . . . . .52 5 結論及未來建議 63 5.1 結論. . . . . . . . . . . . . . . . . . . . . . .63 5.2 未來建議. . . . . . . . . . . . . . . . . . . . .64 附錄 65 實驗裝置設計圖. . . . . . . . . . . . . . . . . . . . .65 參考文獻. . . . . . . . . . . . . . . . . . . . . . . .69

    [1] P. L. Rijke ”Noitz` ‘uber eine neue Art die in einer an beiden Enden of fenen R¨ohre enthaltene Luft in Schwingungen zu versetzen”, Annals of Physics (Leipzig)107, pp. 339, 1859.
    [2] K. T. Feldman, Jr. “Review of the literature on Rijke thermoacoustic phenomena”, Journal of Sound and Vibration, 7, p.83, 1968.
    [3] Lord Rayleigh (J. W. Strutt), The Theory of Sound 2nd ed., Dover, New York, 2, Sec.322, 1877.
    [4] R. Betchov “Nonlinear oscillations of a column of gas”, Physics of Fluids, 1, pp. 205-212, 1958.
    [5] W. Chester “Resonant oscillations in closed tubes”, Journal of Fluid Mechanics, 18, pp. 44-64, 1964.
    [6] Stephen Weiner “Standing sound waves of finite amplitude”, The Journal of the Acoustical Society of America, 40(1), pp. 240-243, 1965.
    [7] J. Jimenez “Nonlinear gas oscillations in pipes. Part1. Theory”, Journal of Fluid Mechanics, 59(1), pp. 23-46, 1973.
    [8] A. L. Van Buren “Mathematical model for non-linear standing waves in a tube”, Journal of Sound Vibration, 42(3), pp. 273-280, 1975.
    [9] Yurii A. Ilinskii “Nonlinear standing waves in an acoustical resonator”, Journal Society of America, 104(5), pp. 2664-2674, 1998.
    [10] L. Elvira-Segura “A finite element algorithm for the study of nonlinear standing waves”, Acoustical Society of America, 103(5), pp. 2312-2677, 1998.
    [11] Christian Vanhille “Numerical model for nonlinear standing waves and weak shocks in thermoviscous fluids”, Acoustical Society of America, 109(6), pp. 2660-2667, 2001.
    [12] Tetsushi Biwa, Yuki Ueda, Hiroshi Nomura, and Uichiro Mizutani “Measurement of the Q valueof an acoustic resonator”, Physical Review, E 72, pp.026601-1 - 026601-6.
    [13] Alan B. Coppens and James V. Sanders “Finite-amplitude standing waves in rigid-walled tubes”, The Journal of the Acoustical Society of America, 43(3), pp. 516-529, 1968.
    [14] S. Temkin “Nonlinear gas oscillations in a resonant tube”, The Physics of Fluids, 11(5), pp. 960-963, 1968.
    [15] D. B. Cruikshank, Jr. “Experimental investigation of finite-amplitude acoustic oscillations in a closed tube”, Journal of Acoustical Society of America, 52, pp. 1024-1036, 1972.
    [16] B. Sturtevant “Nonlinear gas oscillations in pipes. Part2. Experiment”, Journal of Fluid Mechanics, 63(1), pp. 97-120, 1974.
    [17] P. Merkli and H. Thomann “Thermoacoustic effects in a resonance tube”, Journal of Fluid Mechanics, 70(1), pp. 161-177, 1975.
    [18] R. G. Galiullin, R. G. Zaripov, E. R. Galiullina, and R. I. Davydov. “Resonance oscillations of a gas in a shut-end tube in the region of transition to shock waves”, Journal of Engineering Physics and Thermpphysics,73(2), pp. 362-367, 2000.
    [19] N. Rott “Lumped and Thermally Driven Acoustic Oscillations in Wide and Narrow Tubes”, Z. Angew. Math. Phys. 20, pp. 230-243, 1969.
    [20] N. Rott “Thermoacoustic engines”, Adv. Appl. Mech., 20, pp. 135-175, 1980.
    [21] U. A. Muller and N. Rott “Thermally driven acoustic oscillators, part VI:Excitation and Power”, Z. Angew. Math. Phys. 34, p609, 1983.
    [22] W. E. Gifford and R. C. Longsworth “Surface heat pumping”, Advances in Cryogenic Engineering, 11, pp. 171, 1966.
    [23] J. C. Wheatley, T. J. Hofler, G. W. Swift, and A. Migliori “An intrinsically irreversible heat engine”, J. Acoust. Soc. Am. 74, pp. 153, 1983.
    [24] T. Holfer “Thermoacoustic refrigerator design and performance”, Ph.D.dissertation, Physics department, University of California, San Diego, 1986.
    [25] G. W. Swift “Thermoacoustic engines”, Journal of the Acoustical Society of America., 84, pp. 1145-1180, 1988.
    [26] W. Ward and G. Swift “Design Environment for Low-Amplitude Thermo-Acoustic Engines”, J. Acoust. Soc. Am. 95(6), pp. 3671-3672, 1994.
    [27] A. S. Worlikar and O. M. Knio “Numerical simulation of a thermoacoustic refrigerator I. Unsteady adiabatic flow around the stack”, Journal of Computational Physics 127(2), pp. 424-451, 1996.
    [28] A. S. Worlikar, O. M. Knio and R. Klein “Numerical Simulation of a Thermoacoustic Refrigerator: II. Stratified Flow around the Stack”, Journal of
    Computational Physics 144(2), pp. 299-324, 1998.
    [29] G. W. Swift “Thermoacoustic natural gas liquefier”, Proceedings of the DOE Natural Gas Conference, 1997.
    [30] O. G. Symko “Energy conversion using thermoacoustic devices”, International Conference on Thermoelectrics, ICT, pp. 645-648, 1999.
    [31] C. Tsai, R.-L. Chen, C.-L. Chen, and J. DeNatale “Micromachined stack component for miniature thermoacoustic refrigerator”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 149-151, 2002.
    [32] D. Marx and P. Blanc-Benon “Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator”, Comptes Rendus - Mecanique, 332(11), pp. 867-874, 2004.
    [33] D. Marx and P. Blanc-Benon “Numerical calculation of the temperature difference between the extremities of a thermoacoustic stack plate”, Cryogenics, 45(3), pp. 163-172, 2005.
    [34] L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders “Fundamentals of Acoustics”, John-Wiley, New York, 1982.
    [35] NEC,TOKIN “Piezoelectric Ceramics”, Catalog, 2006.

    無法下載圖示 全文公開日期 2013/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE