簡易檢索 / 詳目顯示

研究生: 吳佳勳
Chia-Hsun Wu
論文名稱: 智慧型長行程奈米精度氣壓-壓電混合精密伺服YZ定位控制
Development of a Novel Intelligent Pneumatic-Piezoelectric Hybrid Servo YZ Positioning System with Large Stroke and Nanometer Accuracy
指導教授: 江茂雄
Mao-Hsiung Chiang
口試委員: 王英才
Y-T Wang
薛文証
Wen-Jeng Hsueh
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 126
中文關鍵詞: 軌跡控制定位控制氣壓-壓電伺服定位XYZ平台壓電致動器改良式距離基礎之解耦合自組織模糊滑動控制
外文關鍵詞: decupling control, signed-distance, path tracking control, self-organizing, pneumatic-PZT servo YZ positioning platform
相關次數: 點閱:304下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在應用無桿氣壓缸結合壓電致動器,發展XYZ 三軸長行程奈米精度伺服定位平台與控制,大行程由氣壓伺服系統進行粗定位,小行程由壓電致動器作補償。其中X 軸為獨立軸,YZ 兩軸固定在一起,構成龍門型三次元定位平台,本文主要探討固定在一起的YZ 軸之定位效果。
    控制器發展改良式距離基礎之解耦合自組織模糊滑動控制器(MSD-DSOFSMC),使之可以同時擁有智慧型控制等優點,希望能達到最佳的控制性能。實驗證實此系統可成功分別將Y、Z 軸定位到位置感測器最佳解析度20nm、0.1µm。
    另外,本文亦對單軸氣壓-壓電伺服系統的軌跡控制進行探討,實驗誤差約在0.5mm左右,不如預期,控制策略有待後續研究。


    This thesis aims to develop an intelligent hybrid pneumatic-piezoelectric X-YZ platform with large stroke and nanometer precision. In the single axis the pneumatic servo system serves to position in coarse stroke and the piezoelectric (PZT) actuator compensates fine stroke. This multi-axis system is constituted with the separated X-axis and the combined Y- and Z-axis. The thesis focuses on the study of the positioning control of Y- and Z-axis.
    The modified signed-distance decoupling self-organizing fuzzy sliding mode controller (MSD-DSOFSMC), which contains signed-distance fuzzy sliding mode control, self-organizing control and decoupling control, is developed for developing the intelligent controller and solving the decoupling problem. The experiment results show that the system can achieve excellent positioning response and accuracy of 20mm and 0.1µm for Y- and Z-axis with high response for maximum stroke of 250mm.

    中文摘要 I 英文摘要 II 致  謝 III 目  錄 IV 表目錄 VII 圖目錄 VIII 符號索引 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 氣壓系統之回顧 2 1.2.2 壓電致動器之回顧 3 1.2.3 氣壓-壓電系統之回顧 4 1.2.4 控制理論之回顧 5 1.3 研究方向及本文架構 6 1.3.1 研究方向 6 1.3.2 本文架構 6 第二章 實驗架構與設備 8 2.1實驗設備 9 2.1.1 無桿氣壓缸 9 2.1.2 氣壓流量比例伺服閥 10 2.1.3 壓電致動器 11 2.1.3.1 壓電材料簡介 11 2.1.3.2 壓電致動器簡介 12 2.1.3.3 壓電致動器之優缺點 14 2.1.3.4 壓電致動器之磁滯現象 14 2.1.3.5 壓電致動器之蠕動現象 16 2.1.4 光學尺 16 2.1.4.1 光學尺構造與原理 16 2.1.4.2 解碼電路與計數解碼卡 17 2.1.5 電腦控制介面與實驗環境 18 2.2 氣壓伺服定位XYZ平台架構 20 2.3 氣壓-壓電伺服定位XYZ平台架構 22 第三章 控制理論 24 3.1 模糊滑動控制理論 24 3.1.1 模糊滑動控制 24 3.1.2 建立歸屬函數與模糊規則 26 3.1.3 參數Φ、 、 設定 29 3.2 改良式距離基礎之模糊滑動控制理論 30 3.2.1 距離基礎之模糊滑動控制理論 30 3.2.2 改良式距離基礎之模糊滑動控制 32 3.3 改良式距離基礎之自組織模糊滑動控制理論 34 3.3.1 改良式距離基礎之自組織模糊控制器架構 34 3.3.2 距離基礎之自組織模糊滑動控制器 35 3.4 改良式距離基礎之解耦合自組織模糊滑動控制理論 37 3.4.1 改良式距離基礎之單軸解耦合自組織模糊滑動控制器 37 3.4.2 改良式距離基礎之雙軸解耦合自組織模糊滑動控制器 40 第四章 控制器設計 42 4.1 氣壓伺服精密定位控制器設計 43 4.1.1 距離基礎模糊滑動平面規則庫之選取 43 4.1.2 距離基礎模糊滑動平面參數之選取 44 4.1.3 線上調整邊界層及強健項參數之選取 45 4.2 壓電伺服精密定位控制器設計 48 4.3 氣壓-壓電伺服定位控制器設計 50 4.3.1 改良式距離基礎單軸無解耦合氣壓-壓電伺服定位控制器設計 50 4.3.2 改良式距離基礎單軸解耦合自組織氣壓-壓電伺服定位控制器設計 51 4.3.3 改良式距離基礎雙軸解耦合自組織氣壓-壓電伺服定位控制器設計 53 第五章 實驗結果與討論 55 5.1 氣壓伺服定位實驗結果 56 5.1.1 Y軸固定邊界層氣壓伺服定位系統 56 5.1.2 Y軸改變邊界層氣壓伺服定位系統 59 5.1.3 Y軸改變邊界層加強健項氣壓伺服定位系統 62 5.1.4 Z軸改變邊界層加強健項氣壓伺服定位系統 65 5.1.5 綜合比較 68 5.2 氣壓伺服系統軌跡追蹤實驗結果 70 5.2.1 等速度軌跡追蹤實驗 71 5.2.2 修正正弦軌跡追蹤實驗 74 5.2.3 加入壓電擾動之氣壓軌跡追蹤實驗 77 5.3氣壓-壓電伺服定位實驗結果 80 5.3.1 壓電伺服實驗 80 5.3.2 Y軸氣壓-壓電無解耦合伺服定位實驗 82 5.3.3 Y軸氣壓-壓電解耦合伺服定位實驗 85 5.3.4 Z軸氣壓-壓電解耦合伺服定位實驗 90 5.3.5 綜合比較、強健性、重現性實驗 93 5.6 YZ雙軸氣壓-壓電解耦合伺服定位實驗 96 第六章 結論與建議 101 參考文獻 103 作者簡介 111

    [ 1 ] G.BELFORTE,”NewDevelopment And New Trends In Pneumaics,” Departement Of Mechanics Politecnico di Torino Corso Duca degli Abruzzi 24 10129-Torino-Italy.
    [ 2 ] Toshiharu Kagawa, “Heat Transfer Effects on the Frequency Response of a Nozzle Flapper,” ASME, Vol.107, pp.332-336, 1985.
    [ 3 ] Kenji KAWASHIMA,Toshinori FUJITA,Toshiharu KAGAWA”The Effect of Nonliear Characteristics on Pneumatic Servo Systems,” Departement of Mechanical Engineering,Tokyo Mertropolitan College Technology.
    [ 4 ] F. Blackburn, G. Reethof, J. L. Shearer, “Fluid Power Control,” M.I.T. Press, 1960.
    [ 5 ] H. E. Merrit, “Hydraulic Control System,” John Willey & Sons Inc., New York, 1967.
    [ 6 ] J. J. Shearer, “Continuous Control of Motion with Compressed Air,” ScD, Thesis, Massachusetts Institute of Technology, 1954.
    [ 7 ] J. J. Shearer, “The Study of Pneumatic Process in the Continuous Control of Motion with Compressed Air-I,” ASME Trans., pp. 233-242, 1956.
    [ 8 ] C. R. Burrows, “Effect of Position on the Stability of Pneumatic Servo Mechanisms,” J. Mech. Engrs. Sci., Vol. 11, No. 6, pp. 615-616, 1969.
    [ 9 ] P. C. Chiu, Leung, T.P., “Modeling and Microcomputer Control of a Nonlinear Pneumatic Servomechanism,” Trans. Inst. Measurement and Control, Vol.10, pp.71-78, 1988.
    [ 10 ] R. H. Weston, P. R. Moore, T. W. Thatcher, and G. Morgon, , “Computer Controlled Pneumatic Servo Drives,” Proc. Instn. Mech. Engrs., Vol.198B, pp.275-281, 1984
    [ 11 ] Pachnicke E.,Entwicklung von Methoden zur Verbesserung des Positionierverhaltens servopneumatisches Zylinderantriebe durch Mikroprozessoreinsatz, Dissertation der RWTH Aachen, 1986.
    [ 12 ] T. Noritsugu, “Electro-Pneumatic Feedback Speed Control of a Pneumatic Motor. Part I : With an Electro-Pneumatic Proportional Valve,” Journal of Fluid Control, pp. 17-37, 1987.
    [ 13 ] T. Noritsugu, “Development of PWM Mode Electro-Pneumatic Servomechanism. Part II : Position Control of a Pneumatic Cylinder,” Journal of Fluid Control, Vol.66, pp. 65-80, 1987.
    [ 14 ] Y. Ning,M. Betemps,S. Scavarda & A. Jutard,”A Servo Controlled Pneumatic Actuator for small Movement-Application to an Adaptive Gripper,” IEEE 15th Intcr. Conf. on Advanced Robotics, vol.2, pp. 1582-1585,1991.
    [ 15 ] M.C. Shih, Y.F. Huang,”Pneumatic Servo-Cylinder Position Control Using a Self-Tuning Controller,” Internationl Journal of JSME, May, Serier II,vol.35,No.2,pp.247-254 , Japan. ,1992.
    [ 16 ] Hipolit MORENO LLAGOSTERA.Eng.Salvador de las Heras Jimenez Dr.Eng.”Control Of A Pneumatic Servosystem Using Fuzzy logic”
    [ 17 ] 許進順, “氣壓系統之快速定位控制,” 國立清華大學動力機械工程研究所碩士論文, 1994.
    [ 18 ] Murrenhoff H, Boes C., Eschmann R., Mostert E., Stand der Entwicklung in der Servopneumatien Antriebstechnik, O+P Ölhydraulik und Pneumatik 39, Nr.4, 264-281, 1995.
    [ 19 ] Schillings K., Servopneumatische Antriebssysteme und Handhabungsgerät – Modellbildung, Auslegung und Systemtechnik, Dissertation der RWTH Aachen, 2000.
    [ 20 ] Chen X., Leufgen M., Erfassung des Reibverhaltens von Kolbendichtungen und deren Einfluß auf die Positionierung von pneumatischen Systemen, O+P Ölhydraulik und Pneumatik 31, Nr. 12, 914-917, 1987.
    [ 21 ] Eschmann R., Reibkräften an Pneumatikdichtungen, 10. Aachener Fluidtechnisches Kolloquium, Aachen, Bahn 3, 49-69, 1992.
    [ 22 ] Fujita T, Tokashiki R, Kagawa T. Stick-slip motion in pneumatic cylinders driven by meter-out circuit. Proc. of the 4th JHPS International Symposium on Fluid Power, Tokyo, 131-136, 1999.
    [ 23 ] Kazama T, Fujiwara M. Experiment on frictional characteristics of pneumatic cylinders, Proc. of the 4th JHPS International Symposium on Fluid Power, Tokyo, 453-458, 1999.
    [ 24 ] Schillings K., Antriebe und nichtlineare Regelungsverfahren für servopneumatische Handhabungsgeräte, O+P Ölhydraulik und Pneumatik 37, Nr.3, 200-208, 1993.
    [ 25 ] M. C. Shih, Y.F. Huang, Pneumatic servo cylinder position control using a self-tuning controller, International Journal of Japanese Society of Mechanical Engineering, Series C, 35(2), 247-254, 1992.
    [ 26 ] Ferraresi C, Quaglia G. High pneumatic positioner made up of two cooperating actuators, Proc. of the 4th JHPS International Symposium on Fluid Power, Tokyo, 131-136, 1999.
    [ 27 ] 羅年良, “氣壓缸位置與壓力伺服控制系統之研究,” 國立成功大學機械工程研究所碩士論文, 1999.
    [ 28 ] 黃建銘,白凱仁,施明璋,”速度回授補償於氣壓無桿缸伺服精密定位之研究”, 第十八屆機械工程研討會,台北, 2002.
    [ 29 ] 何啟吉, “氣壓缸與步進馬達作雙軸運動之位置控制研究,” 國立成功大學機械工程研究所碩士論文, 2002.
    [ 30 ] K. R. Pai, M. C. Shih,”Nanoaccuracy Position Control of A Pneumatic Cylinder Driven Table,” International Journal of JSME, Series C,Vol.46,.No.3, p.1062-1068, 2003.
    [ 31 ] D.Croft,G.Shedd and S.Devasia,”Creep,hysteresis,and vibration compensation for piezo actuators :atomic force microscopy application,” Proceedings of the 2000 American Control Conference, pp.2123-2138,2000.
    [ 32 ] Leigh, T. and Zimmerman,D.”An implicit method for the nonliner modeling and simulation of piezoceramic actrators displaying hystersis,” Smart structures and materials, AD-Vol.24/AMD-Vol.123,ASME ,pp.57-63,1991.
    [ 33 ] P. R. Moore and T. W. Thatcher, “Compensation in Pneumatically Actuated Servomechanisms,” Trans. Inst. Measurement and Control, Vol.7, pp. 238-244, 1985.
    [ 34 ] Roberto Oboe and Alessandro Beghi, “Modeling and Control of a Dual Stage Actuator Hard Disk with Piezoelectric Secondary Actuator,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 138-143, 1999.
    [ 35 ] R. B. Evans,J. S. Griesbach,”piezoelectric Microactuator for Dual Stage Control,” IEEE Trans. Magn. Vol.35, No.2, pp.977-982,1999
    [ 36 ] 陳承賢,”線性步進馬達結合壓電制動器之次微米定位控制,” 國立中興大學機械工程研究所碩士論文, 2000.
    [ 37 ] C. James Li, Homayoon S. M. Beigi, Shengyi Li and Jiancheng Liang, “Nonlinear Piezo-Actuator Control by Learning Self-Tuning Regulator,” ASME, Journal of Dynamic, Systems, Measurement, and Control, Vol. 115, pp. 720-723,1993.
    [ 38 ] T. Higuchi, Y. Yamagata, K. Furutani and K. Kudoh, “Precise Positioning Mechanism Utilizing Rapid Deformation of Piezoelectric Elements,” IEEE, pp. 222-226.
    [ 39 ] M. Goldfarb and N. Celanovic, “Modeling Piezoelectric Stack Actuators for Control of Micromanipulation,” IEEE, pp69-79, 1997.
    [ 40 ] M. Versteyhe, D. Reynaerts and H. V. Brussel, “A Rigid and Accurate Piezo-stepper Based on Smooth Learning Hybrid Force-Position Controlled Clamping,” IEEE International Conference on Robotics & Automation, pp. 3059-3064, 1998.
    [ 41 ] M. Versteyhe, D. Reynaerts and H. V. Brussel, “Hybrid Force-Position Control of Clamping with a Piezo-Stepper,” IEEE Control Systems, pp. 31-39, 1999.
    [ 42 ] J. M. Han, T. A. Adriaens, L. de Koning Willem, and Reinder Banning, “Modeling Piezoelectric Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, 2000,pp331-341.
    [ 43 ] 李俊忠,”壓電致動器定位控制方法之研究,” 中原大學機械工程研究所碩士論文, 2003.
    [ 44 ] 李滄洲,” 應用單晶片於精密定位系統之研究,” 國立中興大學機械工程研究所碩士論文, 2003.
    [ 45 ] 鄭仲哲,” 利用壓電致動器之精密定位,” 國立交通大學機械工程研究所碩士論文, 2003.
    [ 46 ] 鄭智豪,” 壓電致動精密定位平台之循跡控制,” 彰化師範大學機電工程學系碩士論文, 2003.
    [ 47 ] 簡揚昌,” 壓電長行程定位平台驅動控制器之研製,” 國立臺灣大學機械工程研究所碩士論文, 2003.
    [ 48 ] 劉永田與通口俊郎, “壓電元件與空壓缸所組成之高精度長行程驅動器,” 2001中華民國自動控制研討會,TIC100產學技術發展研討會論文集, pp. 306-311, 2001.
    [ 49 ] Yung-Tien Liu, Higuchi, T., ”Precision positioning device utilizing impact force of combined piezo-pneumatic actuator,” Mechatronics, IEEE/ASME Transactions on , Vol. 6 No.4 , Dec. 2001 ,pp.467 –473.
    [ 50 ] 劉永田,”利用壓電衝擊力之奈米級氣壓驅動定位裝置,” 機械月刊, 第29卷,第11期,pp.34-42, 2003.
    [ 51 ] Procky, T. J. and E. H. Mamdani, “Alinguistic Self-Organizing Process Controller,” Automatica, Vol.5,pp.15-30,1979.
    [ 52 ] Shao, Shihuang, “Fuzzy self-organizing controller and its application for dynamic processes,” Fuzzy Sets and System26, pp.151-164, 1988.
    [ 53 ] Zhang, B. S. Edmunds, J. M. “Self-Organizing Fuzzy Logic Controller,” IEE Proceedings-D, Vol.139, No.5, pp.460-464, 1992.
    [ 54 ] Wu, J. C., Liu, T. S., A sliding-mode approach to fuzzy control design,IEEE Trans. Control Systems Technology, vol. 4, no. 2, 141-151, 1996.
    [ 55 ] Sung-Woo Kim, Ju-Jang Lee, “ Design of a fuzzy controller with fuzzy sliding surface, ” Fuzzy Sets & Systems, vol.71, no.3, pp.359-67, 1995.
    [ 56 ] Ji-Chang Lo,Ya-Hui Kuo,“Decoupled Fuzzy Sliding-Mode Control “, IEEE Trans. on Fuzzy Systems,Vol.6,No.3, pp.426-435, August1998.
    [ 57 ] Jiun-Fei Shiu, Chin-Min Lin, “Decoupled Fuzzy Controller Designed with Fuzzy Sliding Surface,” 2000 Automatic control Conference, pp.463-468.
    [ 58 ] Chih-Min Lin, Chun-Fei Hsu, “Decoupled Fuzzy Sliding-Mode Control of a Nonlinear Aeroelastic Structure,“Fuzzy Systems,2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on , Vol.1, pp.662 -667 , 2002.
    [ 59 ] Byung-Jae Choi, Seong-Woo Kwak, and Byung Kook Kim “Design of a single-input fuzzy logic controller and its properites” Fuzzy Sets and Systems pp.299-308 1999.
    [ 60 ] Shi-Yuan Chen, Fang-Ming Yu, and Hung-Yuan Chung “Decoupled fuzzy controller design with dingle input fuzzy logic,” Department of Electrical Engineering, National Central University,Fuzzy Set and Systems 129 pp.335-342, 2002.
    [ 61 ] D.Q.Zhang and S.K.Panda “Chattering-free and fast-response sliding mode controller” IEE Proc,-Control Theory Appl., Vol. 146, No. 2, pp.171-177 March 1999.
    [ 62 ] 楊旻政”基於距離可變控制法則模糊滑動模糊控制器之設計” 大同大學,電機所,中華民國92年7月.
    [ 63 ] Ching-An Lin, Tung-Fu Hsieh “Decoupling Controller Design for Linear Multivariable Plants”.
    [ 64 ] Arno Linnemann, Rolf Maier “Decoupling by Precompensation While Maintaining Stability.
    [ 65 ] S. J. Huang, R. J. Lian,”Active Vibration Control of a Dynamic Absorber Using Fuzzy Algorithms,” Mechatronics Vol.6,No.3,,pp.317 -336,1996.
    [ 66 ] Ying-Tasi Wang,Ming-Kun Chang, “Experimental Implementations of Decoupling Self-Organizing Fuzzy Control to TITO Pneumatic Position Control System,“ JSME Int. J.,Ser. C Vol.42,No.1,pp85-92,1999.
    [ 67 ] Piezomechanik. Dr. Lutz Pickelmann GmbH, Operating manual for SQV3/500 and PST500/10/60.
    [ 68 ] E. Baily and A. Arapotathis,”Simple sliding mode control scheme applied to robot manioulator,” Int. J. Control, vol.45,pp.1197-1209,1987.
    [ 69 ] 楊清任,“即時語意式自組織模糊控制器之設計,“ 國立台灣大學碩士論文,1992.
    [ 70 ] Schroeck,S.J.,Messner,W.C.,“One Controller design for linear time-invariant dual-input signal-output systems,“ American Control Conference, 1999. Proceedings of the 1999 , Vol.6, pp.4122 -4126 , 1999.
    [ 71 ] D.Q.Zhang and S.K.Panda “Chattering-free and fast-response sliding mode controller,” IEE Proc,-Control Theory Appl., Vol. 146, No. 2, pp.171-177 March 1999.
    [ 72 ] J. J. Slotine & S. S. Sastry, ”Tracking control of nonlinear systems using sliding surface with application to robot manipulators,” Int. J. Control, Vol. 38, No.2, pp.465-492, Feb. 1983.
    [ 73 ] J. J. Slotine, ”Sliding controller design for nonlinear systems,“ Int. J. Control, Vol.40, No2, pp. 421-434, Feb. 1984.
    [ 74 ] A. F. Fillppov, Differential Equation with Discontinuous Rightsides, Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.
    [ 75 ] 施文凱,”應用基因-模糊控制於氣壓-壓電精密定位伺服系統之研究,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2001.
    [ 76 ] 鄒丹妮,”應用適應性可變結構控制於氣壓-壓電精密定位伺服系統之研究,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2001.
    [ 77 ] 張瑛淑,”智慧型長行程次微米之氣壓-壓電定位系統設計及控制,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2002.
    [ 78 ] 郭倉旻,”智慧型長行程次微米精度之氣壓-壓電混合精密伺服定位X-Y平台設計及控制,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2003.
    [ 79 ] 侯人豪,”解耦合自組織滑動平面調變控制於氣壓-壓電混合力量控制之研究,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2003.
    [ 80 ] 陳俊毓,”長行程奈米精度氣壓-壓電混何精密伺服定位XY平台設計與智慧型控制,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2004.
    [ 81 ] 李明隆,”改良式距離基礎之模糊滑動模式控制應用於長行程次微米之氣壓-壓電混何精密伺服定位平台模擬與控制,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2004.
    [ 82 ] 陳心怡,”模糊滑動平面調變控制應用於氣壓-壓電整合速度之研究,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2004.
    [ 83 ] Chiang, M.H., CHEN C.C.*, Chow, D.N.*, High precision pneumatic-piezoelectric hybrid positioning control using adaptive discrete variable structure control, Mechatronics 15, 2005, pp.523-545 (SCI, EI).
    [ 84 ] Chiang, M.H., Chang, Y.S.*, Intelligenter hybrider Pneumatik-Piezo-Aktuator zur Lageregelung mit großem Hub und hoher Genauigkeit, (Intelligent Hybrid Pneumatic-Piezo-Actuator for Positioning Control with Large Stroke and High Accuracy), Ölhydraulik und Pneumatik Nr. 6/2003, pp.431-435, 2003. (德國期刊德文發表、附英文全文翻譯).
    [ 85 ] Chiang, M.H., CHEN, C.C.*, HUANG, C.C.* and CHEN, J.Y.*, Development of an Intelliegnt Pneumatic-Piezoelectric Hybrid Servo Positioning System with High Response, Large Stroke and Nanometer Accuracy, The 6th JFPS International Symposium of Fluid Power, Tsukuba, Japan (2005).
    [ 86 ] Chiang, M.H., Tsou, T.N.*, Decoupling Self-Organizing Fuzzy Sliding Surface Modulation Control for Pneumatic-Piezoelectric Hybrid Force Control, The 8th International Conference on Automation Technology, Taichung, Taiwan, (2005).
    [ 87 ] Chiang, M-H, Chen, T.C. and Chang,Y.S. , Development of a New PWM Pneumatic-Piezoelectric Actuator for Positioning with High Response, Large Stroke and Sub-Micrometer Accuracy, The 7th International Conference on Mechatronics Technology, Taipei, Taiwan, (2003).
    [ 88 ] Chiang, M-H, Ho, R .H.,解耦合自組織模糊滑動平面脈寬調變控制於氣壓-壓電混合力量控制之研究,The 20th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei,Taiwan (2003).
    [ 89 ] Chiang, M-H, Chen, T.C., Chang, Y.S. and Kuo, C.M., Development of a New Intelligent Hybrid Pneumatic-Piezoelectric Actuator for Large Stroke, High Accuracy Positioning, The 7th International Conference on Automation Technology, Chia-Yi, Taiwan (Sep. 2003).
    [ 90 ] Chiang, M.H., Tsou, T.N.*, High Precision Pneumatic-Piezoelectrical Hybrid Positioning System, The Fifth JFPS International Symposium of Fluid Power, Nara, Japan (2002).
    [ 91 ] Chiang, M.H., Chou, D.N.*, Adaptive Variable Structure Control for a Pneumatic- Piezoelectrical Hybrid Positioning System, The 18th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei, Taiwan (2001).
    [ 92 ] Yang, F.L.*, Chiang, M.H., Wu, C.N., Kuo, C.H., Chen, Y.N. and Yeh, Y.C.*, Study on Force Control and Load-Sensing Control of a Hydraulic Valve-Controlled Cylinder Systems with Decoupling Self-Organizing Fuzzy Sliding Mode Controller, Bulletin of the College of Engineering, N.T.U., No. 92, June 2004, pp. 21–34 .
    [ 93 ] Chiang, M.H., Yang, F.L., Chen, Y.N. and Yeh, Y.P., Integrated Control of Clamping Force and Energy-Saving in Hydraulic Injection Moulding Machines Using Decoupling Fuzzy Sliding-Mode Control, International Journal of Advanced Manufacturing Engineering, published online: 12 January 2005.
    [ 94 ] Chiang, M.H., Chien Y.W.*, Parallel control of velocity control and energy-saving control on a hydraulic valve controlled system using self-organizing fuzzy sliding mode control, JSME International Journal, Series C, Vol.46, No.1, pp.224-231, 2003.
    [ 95 ] Chiang, M.H., LEE, L.W.*, Huang, G.H., Development of a Hydraulic-Piezo-Actuator for Hybrid Positioning Control with Large Stroke and Sub-Micrometer Accuracy, IEEE International Conference on Mechatronics (ICM2005), Taipei, Taiwan (2005).
    [ 96 ] Chiang, M-H, Lee, L.-W.*, Huang, G.H.*,大行程高出力次微米精度之液壓-壓電混合定位系統設計與控制,The 21st National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Kaoshiung,Taiwan (2004).
    [ 97 ] Chiang, M-H, Yeh, I.C., Parallel Control of Path Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Decoupling Fuzzy Sliding Mode Control, The 13rd National Conference on Automation Technology, Taipei, Taiwan. (Jun. 2004).
    [ 98 ] Chiang, M-H, Yeh**,Y.P.,解耦合自組織模糊滑動模式控制應用於閥控液壓缸系統變排量節能控制與速度控制之平行控制研究,The 20th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei,Taiwan (2003).
    [ 99 ] Chiang, M.H., Chien Y.W.*, Integration of path control and load-sensing control on a hydraulic valve controlled system using fuzzy sliding mode control, The 18th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei, Taiwan (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE