簡易檢索 / 詳目顯示

研究生: 陳映辰
Ying-chen Chen
論文名稱: 以影像為基礎之電液疲勞試驗機
A vision based electrohydraulic fatigue testing machine
指導教授: 王英才
Ying-Tsai Wang
口試委員: 莊福盛
Fu-sheng Chuang
江茂雄
Mao-hsiung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 自組織滑動模糊控制器自調式PID電液伺服系統疲勞試驗機電腦視覺
外文關鍵詞: Self-Organizing Sliding Mode Fuzzy Controller, Self-tuning PID, Electrohydraulic servo system, Fatigue testing machine, coumputer vision
相關次數: 點閱:315下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以影像做為位移感測之回授,受限於影像之取樣頻率較傳統感測器低,且存在影像處理造成之時間延遲,因此在高頻疲勞測試時,一般以動態追蹤誤差為基準之控制器性能不佳。本文將探討不同之控制器,對於以影像為基礎之電液伺服疲勞測試機,提供可行的控制方法。
    實驗中,將分別使用自組織滑動模糊控制器進行動態之軌跡追蹤控制和自調式PID控制器控制振幅大小和中心平均值,分析兩種控制器應用於以影像為基礎之電液伺服疲勞測試機的控制性能和精確度,並探討非接觸式CCD Camera取代傳統LVDT的可行性。


    The application of vision based system will be limited by the sampling rate of image processes which is often lower than the conventional sensors. In the high frequency fatigue test, the trajectory tracking approach is the main reason resulting in bad control performance. In this thesis, it will develop suitable controllers for implementations of vision based electro-hydraulic fatigue testing machine.
    In experiments, Self-Organizing Sliding Mode Fuzzy Control is developed to carry out dynamic tracking control and self-tuning PID is used to control the average value and the maximum value of amplitude, respectively. The variety frequency fatigue testing results indicate the control performance and precision between the different controllers, and then it will discuss the feasibility of non-contacted CCD camera to replace contacted sensors.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文大綱 4 第二章 系統架構 6 2.1 系統架構 6 2.2 液壓系統 7 2.3 控制系統 9 2.4 系統工作流程 12 第三章 影像視覺處理與量測誤差分析 13 3.1 影像處理流程 13 3.2 應用軟體介紹 14 3.2.1 Microsoft Visual C++.Net 14 3.2.2 Active Matrox Imaging Library(AMIL) 16 3.3 CCD Camera影像校正 18 3.4 量測誤差分析 20 第四章 控制理論 21 4.1 自組織滑動模糊控制器 (SOSMFC) 21 4.1.1 滑動模式理論 (Sliding mode theory) 22 4.1.2 模糊化 (Fuzzification) 25 4.1.3 模糊知識庫(Fuzzy Knowledge Base) 27 4.1.4 模糊推論(Fuzzy Inference) 27 4.1.5 解模糊化 (Defuzzification) 28 4.1.6 自組織學習機構 29 4.2 自調式PID控制器 33 4.2.1 PID控制器 34 4.2.2 自調式控制 34 4.2.3 自調式控制之穩定度分析 35 第五章 實驗結果與分析 37 5.1 實驗規劃 37 5.2 實驗參數設定 38 5.2.1 自組織滑動模糊控制器之相關參數設定 38 5.2.2 自調式PID控制器之相關參數設定 40 5.3 實驗結果與分析 41 5.3.1 0.1Hz~1Hz疲勞試驗 42 5.3.2 3Hz疲勞試驗 46 5.3.3 5Hz~7Hz疲勞試驗 50 5.4 實驗之綜合討論 52 第六章 結論 55 參考文獻 57 作者簡介 59

    [1]Tseng, C. C. and Chen, M. S., “Electric contacts inspection using machine vision” , Image and Vision Computing, Vol.28, No.6, PP.890-901, 2010.
    [2]Yao, X. F., Qi, H. N., Jiang, L. Z. and Wang, W., “An automatic control system for EOD robot based on binocular vision position” , IEEE International Conference on Robotics and Biomimetics, pp.914-919, 2008.
    [3]Wai, R. J., Lin C. M. and Hsu, C. F., “Self-organizing fuzzy control for motor-toggle servomechanism via sliding-mode technique” , Fuzzy Sets and Systems, Vol.131, pp.235-249, 2002.
    [4]Corke, P. I. and Hutchinson S. A., “Real-time vision tracking and control” , IEEE International Conference on Robotics and Automation, Vol.1, pp. 622-629, 2000.
    [5]Huang, S. J. and Wu, S. S., “Vision-based robotic motion control for non-autonomous environment” , Journal of Intelligent and Robotic Systems: Theory and Applications, pp.733-754, 2009.
    [6]Ren, J., Orwell, J., Jones, G. A. and Xu, M., “Tracking the soccer ball using multiple fixed cameras” , Computer Vision and Image understanding, pp. 633-642, 2009.
    [7]Kanchanomai, C., Yamamoto, S., Miyashita, Y., Mutoh, Y., and McEvily, A .J., “Low cycle fatigue test for solders using non-contact digital image measurement system” , International Journal of Fatigue, Vol.24, No1, pp.57-67, 2002.
    [8]Zhang, H., Ukrainetz, P. R., Burton, R. T. and Nikiforuk, P. N., “Implementation of neural network approach in MIMO electrohydraulic servosystem control” , IEEE International Conference, Vol.2, pp.1468-1473, 1996.
    [9]Yao, J., Wang, L., Wang, C., Zhang, Z., and Jia, P., “ANN-based PID controller for an electrohydraulic servosystem” , IEEE international conference on automation and logistics, pp.18–22, 2008.
    [10]Clegg, A. C., Dunnigan, M. W. and Lane, D. M., “Self-tuning position and force control of an underwater hydraulic manipulator” , IEEE International Conference on Robotics and Automation, Vol.4, pp. 3226-3231, 2001.
    [11]Yun, J.S. and Cho, H. S., “Adaptive model following control of electrohydraulic velocity control systems subjected to unknown disturbances” , IEEE International Conference, Vol.135, pp.149- 156, 1988.
    [12]Zadeh, L. A., “Electrical engineering at the crossroads” , IEEE International Conference, Vol.8, pp.30-33, 1965.
    [13]Mamdani, E. H. “Application of fuzzy algorithms for control of simple dynamic plant” , Proceedings of the Institution of Electrical Engineers, Vol.121, No12, pp. 1585-1588, 1974.
    [14]Maeda, M., Maeda, Y. and Murakami, S., “Fuzzy drive control of an autonomous mobile robot” , Fuzzy Sets and Systems , pp.195-204,1991.
    [15]Y.T. Wang and C.C. Chang, “The fuzzy control of an electrohydraulic fatigue testing system” , International Journal of Materials and Product Technology, Vol.13, pp.3–6, 1998.
    [16]Chiang, M. H., Yeh, Y. P., Yang, F. L. and Chen, Y. N., “Integrated control of clamping force and energy-saving in hydraulic injection moulding machines using decoupling fuzzy sliding mode control” , Journal of Advanced Manufacturing Technology, Vol.27, pp.53-62, 2005.
    [17]Huang, S. J. and Huang, K. S., “An adaptive fuzzy sliding-mode controller for servomechanism disturbance rejection” , IEEE Transactions on Industrial Electronics, v 48, n 4, p 845-852, 2001.
    [18]“Matrox Image Library Version7.0 User Guide” , Matrox Electronic System, 2001.

    QR CODE