簡易檢索 / 詳目顯示

研究生: 黃衍炘
Yen-Hsin Huang
論文名稱: 運用聲射技術於聚合物水泥砂漿探討液驅破壞之力學特徵
Application of Acoustic Emission Technology to Investigate the Mechanical Characteristics of Fluid-driven Failure in Polymer Cement Mortar
指導教授: 李安叡
An-Jui Li
口試委員: 李安叡
An-Jui Li
陳韋志
Wei-Chih Chen
陳堯中
Yao-Chung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 139
中文關鍵詞: 聚合物水泥砂漿液驅破壞聲射
外文關鍵詞: Polymer Cement Mortar, Fluid-driven fracture, Acoustic emission (AE)
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚合物混凝土具有較傳統混凝土更高的抗壓強度,且早期強度發展快速、有更佳的耐化學腐蝕性及更佳的耐久性等優點。若以此為建材,可延長建築物壽命,進而能減少資源浪費及達到節能減碳之目的。而未來若能進一步使用於地下水庫或隧道,勢必面臨到液體與聚合物混凝土兩者間力學相關破壞機制,故本研究以聚合物水泥砂漿為材料,並與傳統水泥砂漿比較,藉由施做液驅破壞同步聲射定位技術之試驗,探討材料受液體壓力驅破之完整加載歷程及裂縫衍生之過程,以及巨觀、微觀之力學行為。傳統水泥砂漿之峰後可控制之時間會隨著試體強度提高而縮短,而聚合物水泥砂漿之強度會隨著養護時間增長而增加,且齡期一天及三天之試體受液驅破壞之行為亦不相同,分別為產生裂隙及完全開裂,而此現象與其膠結材固化程度有關。齡期一天之試體會因水壓洩出而試體回彈,齡期三天之試體則因完全開裂而無法得知其峰後資訊。


    Polymer concrete has higher compressive strength than traditional concrete, and has the advantages of rapid development of early strength, better chemical resistance and better durability. If this is used as a building material in the future, due to its own strength and durability against harsh environments, the life of the building can be extended, and resource waste and energy saving and carbon reduction can be reduced. In the future, if it can be further used in underground water reservoirs or tunnels, it is bound to face the mechanically related failure mechanism between liquid and polymer concrete. Therefore, this study uses polymer cement mortar as the material and compares it with traditional cement mortar. Through the experiment of fluid-driven fracturing apparatus with coupling acoustic emission, the complete loading history of the material driven by liquid pressure and the process of crack derivation, as well as the macroscopic and microscopic mechanical behavior are discussed.
    The time that can be controlled after the peak of the traditional cement mortar will decrease as the strength of the specimen increases, while the strength of the polymer cement mortar will increase as the curing time increases. Moreover, the behaviors of the one-day and three-day specimens damaged by fluid-driven are also different, which are cracks and complete cracking, respectively, and this phenomenon is related to the degree of solidification of the cement material. The one-day curing body will rebound due to water pressure leaking, and the three-day specimen will be completely cracked without knowing its post-peak information.

    中文摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XI 符號對照表 XII 中英對照表 XIV 第1章 緒論 16 1.1研究動機及目的 16 1.2研究範圍與方法 17 1.3論文內容 19 第2章 文獻回顧 20 2.1 樹脂混凝土 20 2.2 聚合物水泥砂漿 21 2.2.1 不飽和聚脂樹脂(UP) 21 2.2.2 不飽和聚脂樹脂之聚合固化 22 2.2.3 硬化劑 23 2.3 水力破裂 23 2.3.1 理論模式 24 2.4 室內液驅破壞理論發展 29 2.5 非破壞檢測技術-聲射法 31 2.5.1 聲射定位原理 32 第3章 試驗架構 37 3.1 試驗材料 37 3.1.1 試體成分 37 3.1.2 單軸壓縮試驗 40 3.1.3劈裂試驗 42 3.1.4 試體製備 45 3.2 試驗儀器與設備 51 3.2.1液驅破壞加載系統 51 3.2.2 非破壞性聲設法儀器架設 54 3.3 液驅破壞結合聲射技術之實驗步驟 57 3.3.1試驗前置作業 57 3.3.2試驗進行中 58 3.3.3試驗結束 59 第4章 實驗結果與分析 60 4.1 水泥砂漿材料受液驅破壞之行為 60 4.1.1 巨觀-完整加載歷程 60 4.1.2 微觀-微震裂源之演化行為 63 4.2 聚合物水泥砂漿材料受液驅破壞之行為 68 4.2.1 巨觀-完整加載歷程 69 4.2.2 微觀-微震裂源之演化行為 73 4.3 液驅破壞強度與劈裂試驗之比較 82 第5章 結論與建議 84 5.1 結論 84 5.1.1完整加載歷程之巨觀行為 84 5.1.2完整加載歷程之微觀行為 85 5.2 建議 85 參考文獻 86 附錄A 應力與時間關係之加載歷時曲線 88 附錄B 應力與變形關係之加載歷時曲線 103 附錄C 聲射事件演化時間組圖 116 附錄D 聲射事件演化空間組圖 128 中文摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 符號對照表 XI 中英對照表 XIII 第1章 緒論 15 1.1研究動機及目的 15 1.2研究範圍與方法 16 1.3論文內容 19 第2章 文獻回顧 20 2.1 樹脂混凝土 20 2.2 聚合物水泥砂漿 21 2.2.1 不飽和聚脂樹脂(UP) 21 2.2.2 不飽和聚脂樹脂之聚合固化 22 2.2.3 硬化劑 23 2.3 水力破裂 23 2.3.1 理論模式 24 2.4 室內液驅破壞理論發展 29 2.5 非破壞檢測技術-聲射法 31 2.5.1 聲射定位原理 32 第3章 試驗架構 37 3.1 試驗材料 37 3.1.1 試體成分 37 3.1.2 單軸壓縮試驗 40 3.1.3劈裂試驗 42 3.1.4 試體製備 45 3.2 試驗儀器與設備 51 3.2.1液驅破壞加載系統 51 3.2.2 非破壞性聲設法儀器架設 54 3.3 液驅破壞結合聲射技術之實驗步驟 57 3.3.1試驗前置作業 57 3.3.2試驗進行中 58 3.3.3試驗結束 59 第4章 實驗結果與分析 60 4.1 水泥砂漿材料受液驅破壞之行為 60 4.1.1 巨觀-完整加載歷程 60 4.1.2 微觀-微震裂源之演化行為 64 4.2 聚合物水泥砂漿材料受液驅破壞之行為 68 4.2.1 巨觀-完整加載歷程 68 4.2.2 微觀-微震裂源之演化行為 72 第5章 結論與建議 80 5.1 結論 80 5.1.1完整加載歷程之巨觀行為 80 5.1.2完整加載歷程之微觀行為 81 5.2 建議 81 參考文獻 82 附錄A 應力與時間關係之加載歷時曲線 84 附錄B 應力與變形關係之加載歷時曲線 99 附錄C 聲射事件演化時間組圖 112 附錄D 聲射事件演化空間組圖 124

    1. 馬振基,高分子複合材料,國立編譯館,台北,2009。
    2. 陳韋志,應用同步化非破壞檢測技術研探擬脆性岩材受液體驅動破壞行為,博士論文,國立台灣科技大學營建工程系,台北,2014。
    3. Bray, D. E., & McBride, D. (1992), "Acoustic emission technology. Nondestructive Testing Techniques." New York, 345-377.
    4. Chen D., Liu F., Yang F., Jing L., Feng W., Lv J., Luo Q., "Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages. "Construction and Building Materials 177 (2018) 477–498
    5. Chen, L. H. (2001), "Failure of rock under normal wedge indentation." Ph. D. Thesis, University of Minnesota, Minnesota.
    6. Chitrala Y., Moreno C., Sondergeld C., Rai C., "An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions. " Journal of Petroleum Science and Engineering 108(2013)151–161.
    7. Detournay, E. (2004), "Propagation regimes of fluid-driven fractures in impermeable rocks. " International Journal of Geomechanics, 4(1), 35- 45.
    8. Gao Y., Romero P., Zhang H., Huang M., Lai F., "Unsaturated polyester resin concrete: A review. "Construction and Building Materials 228 (2019) 116709
    9. Goodman R.E.,(1989), " Introduction to rock mechanics. ",P119.
    10. Haimson, B. C., & Fairhurst, C. (1969), "In-situ stress determination at great depth by means of hydraulic fracturing." Paper presented at the The 11th US Symposium on Rock Mechanics (USRMS).
    11. Hubbert M. K., & Willis, D. G. (1972). "Mechanics of hydraulic fracturing. "
    12. Kaiser J.(1953), "Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch. " Ph. D Thesis. Technische Hochschule, Munich.
    13. Labuz J. F., Shah, S. P., & Dowding C. H. (1987), "The fracture process zone in granite: evidence and effect. " Paper presented at the International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts.
    14. Majer E.L., Doe T.W., "Studying hydrofractures by high frequency seismic monitoring." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Volume 23, Issue 3, June 1986, Pages 185-199. https://doi.org/10.1016/0148-9062(86)90965-4
    15. Maji A. and Sahu, R(1994), "Acoustic emissions from reinforced concrete," Experimental Mechanics, vol. 34, no. 4, 1994, pp 379 388.
    16. Ohtsu, M. (1987), "Acoustic emission characteristics in concrete and diagnostic applications. " Journal of acoustic emission, 6(2), 99-108.
    17. Paul Young R. and Martin, C. D. "Potential role of acoustic emission/microseismicity investigations in the s ite characterization and performance monitoring of nuclear waste repositories," International Journal of Rock Mechanics and Mining Sciences, vol. 30, no. 7,1993, pp 797 803.
    18. Rummel, F. (1987), "Fracture mechanics approach to hydraulic fracturing stress measurements. " Fracture mechanics of rock, 6, 217- 239.
    19. Rummel, F., & Winter, R. B. (1983), "Application of laboratory fracture mechanics data to hydraulic fracturing field tests Hydraulic fracturing and geothermal energy. " (pp. 493-501): Springer.
    20. Wu R., "Some Fundamental Mechanisms of Hydraulic Fracturing."
    21. Zoback, M. D., Rummel, F., Jung, R., & Raleigh, C. B. (1977), "Laboratory hydraulic fracturing experiments in intact and pre- fractured rock. " International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14(2), 49-58.

    無法下載圖示 全文公開日期 2025/08/23 (校內網路)
    全文公開日期 2040/08/23 (校外網路)
    全文公開日期 2040/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE