簡易檢索 / 詳目顯示

研究生: 吳亭葦
Ting-Wei Wu
論文名稱: 以冷凍乾燥法製備鈦酸鋇 /ꞵ 三鈣磷酸鹽 /膠原蛋白複合支架與性質鑑定
Characterization and preparation of freeze dried-barium titanate/ ꞵ-tricalcium phosphate/ collagen composite scaffolds
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
林穎志
Ying-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 103
中文關鍵詞: 齒槽骨保存術複合支架膠原蛋白鈦酸鋇β-磷酸三鈣
外文關鍵詞: alveolar ridge preservation, composite scaffold, collagen, barium titanate, β-TCP
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

針對牙周病與蛀牙問題,患者容易有齒槽骨萎縮之症狀伴隨出血等情況。本研究開發一種治療牙齒脫落後造成的齒槽骨缺損之填充材料應用於齒槽骨保存手術。本實驗設計此填充材料含有三種成分:壓電陶瓷鈦酸鋇(BT)、β-三鈣磷酸鹽(β-TCP)和膠原蛋白。 BT具有人骨的壓電特性,可自發極化產生電訊號刺激骨生長,β-TCP具有良好的生物降解性,膠原蛋白能起到凝血作用,有助於術後止血及修復,並透過冷凍乾燥法在填充材上建立孔洞,提供組織和血管的生長空間。基於上述優點,填充材預計可提高患者齒槽骨的恢復速度,縮短療程,從而減輕患者的痛苦。此研究中製備了不同比例之BT/β-TCP結合膠原蛋白的多孔複合材料。而後通過X射線繞射(XRD)分析晶體結構,利用掃描電子顯微鏡研究微結構和形貌;藉由壓汞測孔儀測量孔隙率及孔洞大小;萬能試驗機測量其機械性質;毛細作用測試其對液體吸附速率。生物相容性測試則使用ISO10993-5之濃度標準進行細胞存活率分析(MTT assay)。結果顯示噴霧乾燥法造粒之45wt%BT/ 45wt%ꞵ-TCP/ 10wt%collagen複合材料有較佳的性質穩定性,其孔隙率為85.25%,機械強度3.19±0.41 MPa,28天之生物降解量為8.69±0.40wt%,生物相容性之細胞存活率達99.86±2.17%,並且在毛細作用測試有相對快速的液體吸附速率表現,有助於臨床應用上快速吸附並穩定血塊的效果。


Periodontitis and cavities would cause tooth exfoliation and bone defects with bleeding. To solve this problem, alveolar ridge preservation is needed. This study aims to develop a dental implant to treat bone defects of shed teeth in alveolar ridge preserving surgery. This dental implant contains three components, barium titanate (BT), β-tricalcium phosphate (β-TCP), and collagen. BT shows piezoelectric properties, which can produce an electric charge that promotes bone repair and reconstruction conducive to bone healing. β-TCP provides good biocompatibility. Collagen helps blood clot well, and porosity of filling material created by the freeze-drying method provides a three-dimensional space for tissue and blood vessel growth. Based on these three properties, the dental implant accelerates the recovery of patients’ tooth alveolar bones in order to alleviate the pains of patients. In this study, BT/β-TCP/Collagen-contained fillers were prepared. Several characterization techniques were carried out to analyze the properties of these materials. Initially, the crystal structures were analyzed by X-ray diffraction (XRD), while the microstructures and morphologies were investigated by scanning electron microscopy. The porosity and pore size are measured by a mercury porosity meter and the mechanical properties of compressive strength and biodegradability are tested. Absorption rate is carried out by capillarity test. Biocompatibility test were conducted in accordance with the ISO 10993-5 standard. The 45wt%BT/ 45wt%ꞵ-TCP/ 10wt% collagen specimen exhibits significantly improved the porosity (85.25%), compressive strength (3.19±0.41 MPa), biodegradability (8.69±0.40wt%), and cell viability 99.86±2.17%.

摘要 I Abstract II 目錄 VI 圖目錄 X 表目錄 XVI 第一章 前言 1 1.1研究背景 1 1.2研究動機 2 第二章 文獻回顧 3 2.1 齒槽骨 3 2.1.1齒槽骨缺損之原因 5 2.1.2齒槽骨缺損之治療 7 2.2 壓電效應 9 2.2.1骨的壓電效應 11 2.3 壓電材料 12 2.3.1 壓電材料種類 12 2.3.2 鈦酸鋇之組成及性質 13 2.4 生醫陶瓷 14 2.4.1 生醫陶瓷材料種類 15 2.4.2 三鈣磷酸鹽之組成及性質 17 2.5 膠原蛋白 19 2.5.1 膠原蛋白種類 19 2.5.2 膠原蛋白之性質 20 2.6 壓電生醫陶瓷複合材料 21 2.6.1 壓電生醫陶瓷複合多孔支架之條件 23 第三章 實驗方法與目的 24 3.1 實驗設計 24 3.2 實驗藥品 27 3.3實驗儀器設備 29 3.4 樣品製備方法 31 3.4.1 β-三鈣磷酸鹽粉末 31 3.4.2 鈦酸鋇/β-三鈣磷酸鹽/膠原蛋白複合填料 33 3.5 樣品性質之分析方法 35 3.5.1 X光繞射分析儀 35 3.5.2 場發射掃描式電子顯微鏡 35 3.5.3 壓汞測孔儀 37 3.5.4 萬能試驗機 38 3.5.5 體外生物降解行為 38 3.5.6 體外生物相容性評估 39 3.5.7 毛細作用測試 40 第四章 實驗結果 41 4.1陶瓷粉末性質分析 41 4.1.1晶相分析 41 4.1.2陶瓷粉末形貌及粒徑分析 43 4.2 BT/ꞵ-TCP/collagen之複合支架分析 45 4.2.1晶相分析 45 4.2.2巨觀形貌 45 4.2.3微結構分析 46 4.2.4孔洞分析 48 4.2.5壓縮試驗 50 4.2.6體外生物降解行為 51 4.2.7體外細胞活性評估 52 4.2.8毛細作用測試 53 4.3 SD granulated- BT/ꞵ-TCP粉末 55 4.3.1晶相分析 55 4.3.2粉末形貌及粒徑分析 55 4.4 SD granulated- BT/ꞵ-TCP/collagen之複合支架分析 58 4.4.1晶相分析 58 4.4.2巨觀形貌 58 4.4.3微結構分析 60 4.4.4孔洞分析 61 4.4.5壓縮試驗 63 4.4.6體外生物降解行為 64 4.4.7體外細胞活性評估 65 4.4.8毛細作用測試 66 第五章 結果討論 68 5.1 BT/ꞵ-TCP/collagen複合支架之微結構與降解行為探討 68 5.2 BT/ꞵ-TCP/collagen複合支架之粉末團聚與分散性對抗壓強度之影響 72 5.3 BT/ꞵ-TCP/collagen複合支架孔洞分布和毛細作用的關聯性探討 75 5.4 BT/ꞵ-TCP/collagen複合支架綜合評估 76 第六章 結論 77 第七章 未來工作 78 參考文獻 79

參考文獻
[1] 黃茂栓、陳彥廷、陳建志、吳睿恩, 105年度成年與老年人口腔健康調查計畫, 衛生福利部, (2016).
[2] 錢世康, 醫師專欄-齒槽骨保存術, 蒔美牙醫集團, (2017).
[3] 呂立婷, 健康生活從齒開始, 遠東人月刊, (2015).
[4] 鄭淑敏, 牙周組織的解剖, (2014).
[5] 鄭淑敏, 植牙的介紹, (2014).
[6] M.G. Newman, H. Takei, P.R. Klokkevold, F.A. Carranza, Carranza's clinical periodontology, Elsevier health sciences (2011).
[7] L.F. Rose, B.L. Mealey, R. Genco, D. Cohen, Periodontics: medicine, surgery, and implants, Elsevier Mosby Saint Louis (2004).
[8] B. Wessing, I. Urban, E. Montero, W. Zechner, M. Hof, J. Alandez, N. Alandez, G. Polizzi, S. Meloni, M. Sanz, Guided bone regeneration using collagen membranes simultaneous to implant placement at compromised sites leads to reproducible results and high success rates, Musculoskeletal Regeneration, 3 (2017).
[9] J. Wolff, The law of bone remodelling, Springer Science & Business Media (2012).
[10] M.H. Amler, P.L. Johnson, I. Salman, Histological and histochemical investigation of human alveolar socket healing in undisturbed extraction wounds, The journal of the american dental association, 61 (1960) 32-44.
[11] G. Cardaropoli, M. Araujo, J. Lindhe, Dynamics of bone tissue formation in tooth extraction sites: an experimental study in dogs, Journal of clinical periodontology, 30 (2003) 809-818.
[12] J. Pietrokovski, The bony residual ridge in man, The Journal of prosthetic dentistry, 34 (1975) 456-462.
[13] L. Schropp, A. Wenzel, L. Kostopoulos, T. Karring, Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study, International Journal of Periodontics & Restorative Dentistry, 23 (2003).
[14] M.G. Araújo, J. Lindhe, Dimensional ridge alterations following tooth extraction. An experimental study in the dog, Journal of clinical periodontology, 32 (2005) 212-218.
[15] 雲天牙醫診所, 植牙補骨粉手術方式、骨粉種類, (2021).
[16] J. Curie, P. Curie, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées, Bulletin de minéralogie, 3 (1880) 90-93.
[17] G. Lippmann, Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques, Journal de Physique Théorique et Appliquée, 10 (1881) 381-394.
[18] J. Curie, P. Curie, Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées, Compt. Rend, 93 (1881) 1137-1140.
[19] W. Voigt, Piezo‐und Pyroelectricität, dielectrische Influenz und Electrostriction bei Krystallen ohne Symmetriecentrum, Annalen Der Physik, 291 (1895) 701-731.
[20] SDTools, Basics of piezoelectricity, (2019)
[21] 陳佳慧, 以溶膠-凝膠法製備鋯鈦酸鉛薄膜作為生物感測器之研究, 奈米科技研究所, 國立交通大學, (2005), 20-21.
[22] I.Y. Eiichi Fukada, On the piezoelectric effect of bone, Journal of the physical society of Japan, 12 (1957).
[23] I.Y. E. Fukada, Piezoelectric Effects in Collagen, Japanese Journal of Applied Physics, 3 (1964).
[24] J. Park, R.S. Lakes, Biomaterials: an introduction, Springer Science & Business Media, (2007).
[25] Y. Zhang, L. Chen, J. Zeng, K. Zhou, D. Zhang, Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering, Materials Science and Engineering: C, 39 (2014) 143-149.
[26] I. Yasuda, Fundamental aspects of fracture treatment, J Kyoto Med Soc, 4 (1953) 395-406.
[27] H.M. Frost, Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians, The Angle Orthodontist, 64 (1994) 175-188.
[28] C. Ruff, B. Holt, E. Trinkaus, Who's afraid of the big bad Wolff?:“Wolff's law” and bone functional adaptation, American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists, 129 (2006) 484-498.
[29] C. Ribeiro, D. Correia, I. Rodrigues, L. Guardão, S. Guimarães, R. Soares, S. Lanceros-Méndez, In vivo demonstration of the suitability of piezoelectric stimuli for bone reparation, Materials Letters, 209 (2017) 118-121.
[30] X.-h. Du, J. Zheng, U. Belegundu, K. Uchino, Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary, Applied physics letters, 72 (1998) 2421-2423.
[31] J. Harrison, Z. Ounaies, Polymers, piezoelectric, Encyclopedia of Smart Materials, (2002).
[32] H. Kawai, The piezoelectricity of poly (vinylidene fluoride), Japanese journal of applied physics, 8 (1969) 975.
[33] 江長凌, 半導體製程㆗高介電材料(High K) 的介紹, 台灣大學化學系.
[34] B. Jaffe, W. Cook, H. Jaffe, The piezoelectric effect in ceramics, Piezoelectr. Ceram, 1 (1971) 7-21.
[35] S. Saha, S. Krupanidhi, Dielectric response in pulsed laser ablated (Ba, Sr) TiO 3 thin films, Journal of Applied Physics, 87 (2000) 849-854.
[36] T.W. Bauer, G.F. Muschler, Bone graft materials: an overview of the basic science, Clinical Orthopaedics and Related Research®, 371 (2000) 10-27.
[37] L.L. Hench, J.M. Polak, Third-generation biomedical materials, Science, 295 (2002) 1014-1017.
[38] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
[39] J. Elliot, Structure and chemistry of the CaP coating and other calcium orthophosphates, (1994)
[40] R.G. Carrodeguas, S. De Aza, α-Tricalcium phosphate: Synthesis, properties and biomedical applications, Acta biomaterialia, 7 (2011) 3536-3546.
[41] A. Ogose, T. Hotta, H. Kawashima, N. Kondo, W. Gu, T. Kamura, N. Endo, Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 72 (2005) 94-101.
[42] G.A. Di Lullo, S.M. Sweeney, J. Korkko, L. Ala-Kokko, J.D. San Antonio, Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen, Journal of Biological Chemistry, 277 (2002) 4223-4231.
[43] R. Berisio, L. Vitagliano, L. Mazzarella, A. Zagari, Crystal structure of the collagen triple helix model [(Pro‐Pro‐Gly) 10] 3, Protein Science, 11 (2002) 262-270.
[44] 宋信文、陳松青, 生醫材料簡介, (2007).
[45] M.J. Mienaltowski, D.E. Birk, Structure, physiology, and biochemistry of collagens, Progress in heritable soft connective tissue diseases, (2014) 5-29.
[46] R.E. Burgeson, Genetic heterogeneity of collagens, Journal of Investigative Dermatology, 79 (1982) 25-30.
[47] J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules, 3 (2002) 232-238.
[48] S.A. Sell, P.S. Wolfe, K. Garg, J.M. McCool, I.A. Rodriguez, G.L. Bowlin, The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues, Polymers, 2 (2010) 522-553.
[49] W. Friess, Collagen–biomaterial for drug delivery, European journal of pharmaceutics and biopharmaceutics, 45 (1998) 113-136.
[50] S. Korossis, Structure-function relationship of heart valves in health and disease, IntechOpen, (2018).
[51] B. Chevallay, D. Herbage, Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy, Medical and Biological Engineering and Computing, 38 (2000) 211-218.
[52] A. Lynn, I. Yannas, W. Bonfield, Antigenicity and immunogenicity of collagen, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 71 (2004) 343-354.
[53] A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone tissue engineering: recent advances and challenges, Critical Reviews™ in Biomedical Engineering, 40 (2012).
[54] K.A. Athanasiou, C.-F. Zhu, D. Lanctot, C. Agrawal, X. Wang, Fundamentals of biomechanics in tissue engineering of bone, Tissue engineering, 6 (2000) 361-381.
[55] C. Rodrigues, P. Serricella, A. Linhares, R. Guerdes, R. Borojevic, M. Rossi, M. Duarte, M. Farina, Characterization of a bovine collagen–hydroxyapatite composite scaffold for bone tissue engineering, Biomaterials, 24 (2003) 4987-4997.
[56] D. Wahl, J. Czernuszka, Collagen-hydroxyapatite composites for hard tissue repair, Eur Cell Mater, 11 (2006) 43-56.
[57] S.-W. Yu, S.-T. Kuo, W.-H. Tuan, Y.-Y. Tsai, C.-H. Su, Ion release from three lead-free piezoelectric ceramics and their physical and cytotoxicity characteristics, Materials Letters, 65 (2011) 3522-3524.
[58] Y. Tang, C. Wu, Z. Wu, L. Hu, W. Zhang, K. Zhao, Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration, Scientific reports, 7 (2017) 1-12.
[59] C. Busuioc, G. Voicu, S.-I. Jinga, V. Mitran, A. Cimpean, The influence of barium titanate on the biological properties of collagen-hydroxiapatite composite scaffolds, Materials Letters, 253 (2019) 317-322.
[60] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474-5491.
[61] H.L. Holtorf, N. Datta, J.A. Jansen, A.G. Mikos, Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 74 (2005) 171-180.
[62] J.-H. Kühne, R. Bartl, B. Frisch, C. Hammer, V. Jansson, M. Zimmer, Bone formation in coralline hydroxyapatite: effects of pore size studied in rabbits, Acta Orthopaedica Scandinavica, 65 (1994) 246-252.
[63] E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, Y. Kuboki, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis, The Journal of Biochemistry, 121 (1997) 317-324.
[64] E. Volkmer, I. Drosse, S. Otto, A. Stangelmayer, M. Stengele, B.C. Kallukalam, W. Mutschler, M. Schieker, Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone, Tissue Engineering Part A, 14 (2008) 1331-1340.
[65] S.K.L. Levengood, S.J. Polak, M.B. Wheeler, A.J. Maki, S.G. Clark, R.D. Jamison, A.J.W. Johnson, Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration, Biomaterials, 31 (2010) 3552-3563.
[66] J. Malmström, E. Adolfsson, A. Arvidsson, P. Thomsen, Bone response inside free‐form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity, Clinical implant dentistry and related research, 9 (2007) 79-88.
[67] S.J. Polak, S.K.L. Levengood, M.B. Wheeler, A.J. Maki, S.G. Clark, A.J.W. Johnson, Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds, Acta Biomaterialia, 7 (2011) 1760-1771.
[68] M. Bohner, G. Baroud, A. Bernstein, N. Döbelin, L. Galea, B. Hesse, R. Heuberger, S. Meille, P. Michel, B. von Rechenberg, Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes, Materials Today, 20 (2017) 106-115.
[69] C. Vitale-Brovarone, M. Miola, C. Balagna, E. Verné, 3D-glass–ceramic scaffolds with antibacterial properties for bone grafting, Chemical Engineering Journal, 137 (2008) 129-136.
[70] C.B. Ruff, Biomechanical analyses of archaeological human skeletons, Biological anthropology of the human skeleton, (2018) 189-224.
[71] A. Cheng, A. Humayun, D.J. Cohen, B.D. Boyan, Z. Schwartz, Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner, Biofabrication, 6 (2014) .
[72] J.E. Biemond, R. Aquarius, N. Verdonschot, P. Buma, Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology, Archives of orthopaedic and trauma surgery, 131 (2011) 711-718.
[73] J. Lv, Z. Jia, J. Li, Y. Wang, J. Yang, P. Xiu, K. Zhang, H. Cai, Z. Liu, Electron beam melting fabrication of porous Ti6Al4V scaffolds: cytocompatibility and osteogenesis, Advanced Engineering Materials, 17 (2015) 1391-1398.
[74] C.E. Misch, Z. Qu, M.W. Bidez, Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement, Journal of oral and maxillofacial surgery, 57 (1999) 700-706.
[75] T. Ohno, M. Aizawa, Effect of the concentrations of the starting solution on the syntheses and powder properties of hollow tricalcium-phosphate microspheres by ultrasonic spray-pyrolysis technique, Key Engineering Materials, Trans Tech Publ, (2006) 235-238.
[76] H. Abdi, Coefficient of variation, Encyclopedia of research design, 1 (2010) 169-171.
[77] 林佳君, 分析與製備應用於引導骨再生之生物活性玻璃/膠原蛋白複合支架, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2021, pp. 74-75.
[78] 譚裎諺, 利用噴霧乾燥法合成58S生物玻璃微球及其性質鑑定之研究, 材料科學與工程系, 國立臺灣科技大學, 台北市, (2019) 104-112.
[79] S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo, Bone bonding mechanism of β‐tricalcium phosphate, Journal of biomedical materials research, 25 (1991) 1303-1315.
[80] M. Arango-Ospina, A.R. Boccaccini, Bioactive glasses and ceramics for tissue engineering, Tissue Engineering Using Ceramics and Polymers, Elsevier, (2022) 111-178.

QR CODE