簡易檢索 / 詳目顯示

研究生: 呂昶宏
Chang-Hung Lu
論文名稱: 偏移加工法加工單晶矽梯形凹槽之加工力量及溫度場分析暨T型奈米流道交界處之下凹深度分析
Analysis of machining force and temperature field for fabricating single-crystal silicon trapezium groove by offset cutting method and analysis of downward depth at the junction of T-shaped nanochannel
指導教授: 林榮慶
Zone-ching Lin
口試委員: 許覺良
Chaug-liang Hsu
王國雄
Kuo-shong Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 154
中文關鍵詞: 分子靜力學奈米級切削單晶矽溫度AFM偏移加工T型奈米流道
外文關鍵詞: molecular statics, nanoscale cutting, single-crystal silicon, temperature, AFM, offset cutting, T-shaped nanochannel
相關次數: 點閱:395下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文應用加工固定切削深度之偏移加工法,進行單晶矽梯形凹槽之加工,其以每切削層在固定加工深度下進行一切削道次加工再向右偏移進行第二切削道次加工完成一偏移加工,如要擴充梯形凹槽的寬度,則可再向右偏移切削完成第三切削道次加工。依上述方法可再增加加工層數,使其增加加工寬度外亦可增加加工深度。本文亦應用比下壓能觀念所建立的估算切削力及下壓力公式,模擬出偏移加工梯形凹槽之第一切削層的第一切削道次及向右偏移的第二切削道次之下壓力以及切削力。本文先以比下壓能的公式,用較小的探針尺寸,計算出在固定加工深度下之偏移加工各切削道次之切削力及下壓力。再運用分子靜力學三維準穩態奈米切削模擬模式,依相同的較小探針尺寸及切削深度,模擬第一切削層偏移加工法所得第一切削道次跟第二切削道次之下壓力及切削力,再將兩種模擬方法所得之切削力及下壓力進行比較,以驗證比下壓能公式所得之偏移加工法的切削力及下壓力的合理性。本文之分子靜力學三維準穩態奈米切削模擬模式其除計算固定加工深度各切削道次的下壓力及切削力,進一步計算等效應力與等效應變,以及計算出被切削單晶矽工件所提升之溫度,本文進而分析被切削單晶矽工件的溫度分佈。此外本文又探討固定下壓力加工出深度約20nm之T型奈米流道,本文提出採用比下壓能觀念在橫向切削道次與縱向道次交界處,在橫向切削道次之中間在使用相同固定下壓力下,在縱向切削道次方向下壓加工工件材料,用比下壓能方法及CAD軟體模擬使其移除部分體積,形成一個具有下凹深度的下凹型狀。再模擬每一橫向切削層之加工切削深度及不同橫向切削層T型奈米流道交界之下凹深度。經由模擬結果,發現T型奈米流道之橫向切削層及縱向切削層交界之下凹深度約等於再增加一橫向切削層所增加的切削深度。本文並利用加工T型奈米流道到第五切削層的交界處所量測出下凹深度之實驗結果與模擬結果相比較,發現實驗之下凹深度與模擬結果差異很小,驗證本文所提出的用比下壓能方法模擬估算T型奈米流道各切削層橫向切削道次與縱向切削道次的交界處產生之下凹深度方法為可行的。


The paper applies offset cutting method to fabricate single-crystal silicon trapezium groove at a fixed cutting depth. Cutting of 1st cutting path is carried out on each cutting layer at a fixed cutting depth, then cutting of the 2nd cutting path is carried out by making rightward offset the cutting tool, thus competing a offset cutting cycle. If it is required to broaden the width of trapezium groove, rightward offset the cutting tool can be made for cutting to complete cutting of the 3rd cutting path. Using the above method, the number of cutting layers can be increased, and their cutting width and cutting depth can thus be increased as well. The paper also applies the equations for estimating cutting force and down force, both established by specific down force energy (SDFE) concept, and simulates the down force and cutting force for the 1st cutting path during offset cutting of trapezium groove on the 1st cutting layer, as well as those for rightward offset cutting of the 2nd cutting path. First of all, considering a smaller size probe, SDFE equation is used to calculate the cutting force and down force for such offset cutting method at a fixed cutting depth in this paper. After that, three-dimensional quasi-steady molecular statics nanocuting simulation model is used to simulate acquisition of down forces and cutting forces in the 1st and 2nd cutting paths using offset cutting method for cutting on the 1st cutting layer by the same smaller sized probe and cutting depth. Comparison is made between the cutting forces and down forces obtained from the above mentioned two methods, in order to prove the rationality of using SDFE equation to acquire cutting force and down force of offset cutting method. The three-dimensional quasi-steady molecular statics nanocuting simulation model not only calculates the down force and cutting force of each cutting path at a fixed cutting depth, but also calculates equivalent stress and equivalent strain, as well as the increased temperature of the cutted single-crystal silicon workpiece. The paper further analyzes the temperature distribution of the cutted single-crystal silicon workpiece. Besides, the paper explores the T-shaped nanochannel at a cutting depth of around 20nm at a fixed down force. This paper proposes employing SDFE concept at the junction between horizontal cutting path and vertical cutting path, using the same fixed down force in the middle of horizontal cutting path, and downpressing and cutting the workpiece material in the direction of vertical cutting path. SDFE method and CAD software are used to simulate the removing volume, thus forming a depressed shape with a depressed depth. SDFE equation and CAD software are used to simulate the cutting and cutting depth of each horizontal cutting layer and the depressed depths at the junction of T-shaped nanochannels on different horizontal cutting layers. As observed from the simulation results, the cutting depth at the junction between horizontal cutting layer and vertical cutting layer of T-shaped nanochannel is almost equivalent to an increased cutting depth on an additional horizontal cutting layer. The paper also compares the experimental results and simulation results of the depressed depths measured at the junction of T-shaped nanochannel being cutted up to the 5th cutting layer. Hence, the paper’s proposal of using SDFE method to simulate and estimate the depressed depth produced at the junction between horizontal and vertical cutting paths on each cutting layer of T-shaped nanochannel, is proved to be feasible.

摘要 I Abstract III 誌謝 V 目錄 I 圖目錄 V 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機及目的 2 1.3文獻回顧 4 1.3.1奈米級切削加工實驗之相關文獻 4 1.3.2奈米級模擬切削及切削工件溫度場的文獻 6 1.4本文架構 12 第二章 不同軸向比下壓能之理論模式之切削力與下壓力預測和固定下壓深度偏移加工法加工梯形凹槽 14 2.1建立不同軸向比下壓能理論模式及計算比下壓能方法 14 2.2.比下壓能理論模式計算切削力與下壓力 17 2.3偏移加工法加工梯形凹槽 19 第三章 分子靜力學三維準穩態奈米級切削模式及溫度提升計算 24 3.1分子靜力學之基本原理 24 3.1.1分子作用力及勢能函數 25 3.1.2截斷半徑法 27 3.1.3物理參數 28 3.1.4虎克 吉夫斯(Hooke-Jeeves)搜尋法 29 3.1.5奈米級切削力之計算 31 3.2等效應變及等效應力計算方法 34 3.2.1等效應變之計算 34 3.2.2等效應力之計算 41 3.3被切削工件之提升溫度計算 42 3.3.1塑性變形熱之提升溫度計算方法 43 3.3.2摩擦熱之提升溫度計算方法 43 第四章 模模擬切削單晶矽之分子靜力學奈米切削程式模型的建構 45 4.1等應變四面體(constant strain tetrahedron,CST)元素 45 4.2奈米切削模擬條件的設定 58 第五章 結果與討論 62 5.1單晶矽基板以固定加工深度方式偏移加工奈米流道梯形凹槽之實驗及比下壓能法計算切削力及下壓力 62 5.1.1以比下壓能觀念模擬偏移加工奈米流道梯形凹槽之結果 62 5.1.2偏移加工奈米流道梯形凹槽之實驗結果 65 5.2偏移加工方法預估加工奈米流道梯形凹槽各道次之下壓力與切削力 74 5.2.1用比下壓能公式模擬偏移加工奈米級單晶矽梯形凹槽各切削道次之模擬結果 75 5.2.2用分子靜力學三維準穩態奈米級切削模式模擬偏移加工奈米級單晶矽梯形凹槽各切削道次結果 76 5.2.3應用比下壓能理論與分子靜力學三維準穩態奈米級切削模式模擬偏移加工奈米級單晶矽梯形凹槽之下壓力與切削力結果之驗證 82 5.3分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽的等效應變與等效應力之分析 84 5.3.1奈米級切削第一切削道次單晶矽梯形凹槽之等效應力與等效應變分析 85 5.3.2奈米級切削單晶矽梯形凹槽第二切削道次之等效應力與等效應變分析 88 5.4分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽之切削溫度計算與探討 92 5.4.1奈米級切削單晶矽梯形凹槽第一切削道次之不同熱源提升的溫度及最後溫佈分佈分析 93 5.4.2奈米級切削單晶矽梯形凹槽第二切削道次之不同熱源提升的溫度及最後溫佈分佈分析 102 5.5T型奈米流道交界處之下凹深度分析 113 5.5.1利用比下壓能理論建立固定下壓力下之T型及凸型奈米流道加工模型 113 5.5.2 T型奈米流道實驗結果分析 115 5.5.3 T型奈米流道交界處下凹深度估算分析 118 第六章 結論 123 參考文獻 125

[1]. Cheng, M. S., Ho, J. S., Tan, C. H., Wong J. P., Ng L. C., and Toh, C. S., “Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus”, Analytica Chimica Acta, Vol.725, pp.74-80 (2012).
[2]. Wang, Z., Wang, D., Jiao, N., Tung, S., and Dong, Z., “A Nanochannel System Fabricated by MEMS Microfabrication and Atomic Force Microscopy”, Nano/Micro Engineered and Molecular Systems, pp.372-376 (2011).
[3]. Salieb-Beugelaar, G.B., Teapal, J., van Nieuwkasteele, J., Wijnperle, D., Tegenfeldt, J.O., Lisdat, F., van den Berg, A., Eijkel, J.C.T. “Field-Dependent DNA Mobility in 20nm High Nanoslits”, Nano Letters, Vol.8, No.7, pp.1785-1790 (2008).
[4]. Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., and Li, J., “Detecting Single Stranded DNA with a Solid State Nanopore”, Nano Letters, Vol.5, No.10, pp.1905-1909 (2005).
[5]. Maleki, T., Mohammadi, S., and Ziaie, B., “A nanofluidic channel with embedded transverse nanoelectrodes”, Nanotechnology, Vol.20, No.10, pp.105302-105308(2009).
[6]. Lübben, J. F. and D. Johannsmann, “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir,Vol.20, No.9, pp. 3698-3703 (2004).
[7]. Fang, T. H., Weng, C. I., and Chang, J. G., “Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol.11, No.5, pp.181-187 (2000).
[8]. Wang, Z.Q., Jiaoa, N. D., Tungc, S., and Donga, Z. L., “Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces”, Applied Surface Science, Vol.257, pp.3627-3631 (2011).
[9]. Tseng, A.A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, Applied Surface Science, Vol. 256, No.13, pp. 4246- 4252 (2010).
[10]. 林建廷,「應用比下壓能及改變下壓力之單晶矽奈米流道凹槽加工模擬模式建立與實驗研究」,碩士論文,國立台灣科技大學大學機械工程研究所,民國102年
[11]. 林榮慶,「以 AFM 探針為刀具進行單晶矽奈米流道凹槽加工之理論模式建立與實驗研究」,科技部補助專題研究計畫成果報告(101-2221-E-011-023-MY3),國立台灣科技大學機械工程系,民國104年
[12]. 鄭皓元,「單晶矽基板奈米流道加工法及實驗研究」,碩士論文,國立台灣科技大學大學機械工程研究所,民國101年
[13]. Lin, Z.C., Tsai, J.S., Hsu, Y.C., and Lin, C.T., “Fabrication Method and Experiment Study of Nanoscale Trapezoidal Groove on Sapphire Substrate by Using Atomic Force Microscope Under a Fixed Cutting Depth and Changed Down Force” Journal of the Chinese Society of Mechanical Engineers, Vol.35, No.1, pp1~10 (2014)
[14]. Irving, J. H. and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.19, Issue 9, pp. 817-829 (1950).
[15]. Kwon, Y. W. and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems,” Computers and Structures, Computational Structures Technology, Vol.82, Issues 23-26, pp. 1993-2000 (2004).
[16]. Igor Ye, T., and Oleg, V., “A method for quasi-static analysis of topologically variable lattice structures,” International Journal of Computational Methods, Vol.3, Issue 1, pp. 71-81 (2006).
[17]. Jeng, Y. R., and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol.126, Issue 4, pp. 767-774 (2004).
[18]. Hu, S. Y., Ludwig, M., Kizler, P., and Schmauder, S., “Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol.6, No.5, pp. 567–586 (1998).
[19]. Saraev, D., Kizler, P., and Schmauder, S., “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Modelling Simul. Mater. Sci., Eng., Vol.7, No.6, pp.1013–1023 (1999).
[20]. 陳雨樵,「以分子模擬方法研究奈米線之機械性質」,碩士論文,國立中正大學機械工程研究所,民國九十五年。
[21]. James, S. and Sundaram, M. M., “A molecular dynamics study of the effect of impact velocity, particle size and angle of impact of abrasive grain in the Vibration Assisted Nano Impact-machining by Loose Abrasives”, Wear,Vol.303, Issue 1-2, pp. 510-518 (2013).
[22]. 黃維富,「銅鎳面心立方晶體之奈米切削能及切削力模式研究」,博士論文,國立台灣科技大學大學機械工程研究所,民國九十五年。
[23]. 林榮慶,簡辰學, 林孟樺,「具空孔缺陷之單晶矽材料之三維分子靜力學奈米級正交切削研究」, SME,論文編號:B9,p.20 (2010).
[24]. Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining”, CIRP Annals, Vol.41, Issue 1, pp.117-120 (1990).
[25]. Childs, T. H. C. and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol.139, Issue2, pp. 235-250 (1990).
[26]. Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process”, Proc. Am. Soc., Precision Eng., pp.76-79 (1990).
[27]. Kim, J. D. and Moon, C. H., “A study on microcutting for the configuration of tools using molecular dynamics”, Journal of Materials Processing Technology, Vol.59, No.4, pp. 309-314 (1995).
[28]. Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon”, Journal of Materials Processing Technology, Vol.184, No.1-3, pp. 407-410 (2007).
[29]. Pei, Q. X., Lu, C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study”, Computational Materials Science, Vol.37, No.4, pp.434-441 (2006).
[30]. Inamura, T. and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool”, Int. J. Japan Soc. Prec. Eng., Vol.25, No. 4, pp. 259-266 (1991).
[31]. Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond”, CIRP Annals, Vol.41, No. 1, pp. 121-124 (1992).
[32]. Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting”, CIRP Annals, Vol.42, No.1, pp.79-82 (1993).
[33]. Cai, M. B., Li, X. P., and Rahman, M., “Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, International Journal of Machine Tool & Manufacture, Vol.47, Issue 1, pp.75–80 (2007).
[34]. Cai, M. B., Li, X. P., and Rahman, M., “Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear”, Wear, Vol.263, Issue7-12, pp.1459-1466 (2007).
[35]. Cai, M. B., Li, X. P., and Rahman, M., “Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, Journal of Materials Processing Technology, Vol.192-193, No.1, pp. 607-612 (2007).
[36]. Tanaka, H. and Shimada, S., “Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation”, CIRP Annals, Vol.56, Issue 1, pp.53-56 (2007).
[37]. Tang, Q. H., “MD simulation of dislocation mobility during cutting with diamond tip on silicon”, Materials Science in Semiconductor Processing, Vol.10, Issue 6, pp.270-275 (2007).
[38]. Shimada, S., “Molecular dynamics analysis of nanometric cutting process”, CIRP Annals, Vol.29, No.4, pp.283-289 (1995).
[39]. Goel, S., Luo, X., Reuben, R. L., and Pen, H., “Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon”, Wear, Vol.284-285, No.25, pp.65-72 (2012).
[40]. Lin, Z. C. and Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique”, Nanotechnology, Vol.15, No.5, pp.510-519 (2004).
[41]. Rahman, A., “Correlations in motions of atoms in liquid argon”, Physical Review, Vol.136, No.2A, pp.405-411 (1964).
[42]. Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals”, Physics review, Vol.114, pp. 687-690 (1959).
[43]. Lin, Z. C. and Hsu, Y. C., “Simalation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-Steady Molecular statics Nanocutting Madel”, CMC: Computers, Materials, & Continua, Vol.25, No.1, pp.75-106 (2011).
[44]. David, L. M., Donald, L. T., and Lionel, M. R., “Theoretical Studies of Termolecular Thermal Recombination of Silicon Atoms”, Journal of Chemical Physics, Vol.84, Issue 8, pp.4426-4428 (1986).
[45]. 沈鈺恆,「奈米級正交切削單晶矽三維溫升模式與分析」,國立台灣科技大學大學機械工程研究所,碩士論文,民國101年。
[46]. Lin, Z. C. and Hsu, Y. C., “Analysis on Simulation of Quasi-steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-crystal Copper”, CMC: Computers, Materials, & Continua, Vol.27, No.2, pp. 143-178 (2012).
[47]. Rentsch, R. and Inasaki, I., “Effects of Fluids on the Surface Generation in Material Removal Processes-Molecular Dynamics Simulation”, CIRP Annals, Vol.55, Issue 1, pp. 601-604 (2006).
[48]. Reklaitis, G. V., Engineering Optimization: Methods and Application, Wiley; 2 Edition, USA (2006).
[49]. Aly, M. F., Ng, E., Veldhuis, S. C., and Elbestawi, M. A., “Prediction of Cutting Forces in the Micro-machining of Silicon Using a Hybrid Molecular Dynamic-finite Element Analysis Force Model”, International Journal of Machine Tools and Manufacture, Vol.46, Issue 14, pp.1727–1739 (2006).
[50]. 王建鈞,「AFM探針切削單晶矽V型溝槽之下壓力和切削力及塑性熱源產生溫度分佈模擬分析」,碩士論文,國立台灣科技大學大學機械工程研究所,民國102年

無法下載圖示 全文公開日期 2021/02/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE