簡易檢索 / 詳目顯示

研究生: 武广道
Amirullah Wijayanto
論文名稱: 環境參數對水底光通訊之性能影響的研究
Study on the Environmental Factors Impact to the Underwater Optical Wireless Communication
指導教授: 廖顯奎
SHIEN-KUEI LIAW
口試委員: 葉建宏
JIAN-HONG YE
游易霖
YI-LIN YOU
廖顯奎
SHIEN-KUEI LIAW
王祥
XIANG WANG
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 62
中文關鍵詞: 水中密度水質亂流溫度誤碼率水下無線光通訊
外文關鍵詞: water densities, water qualities, water flow, temperature, bit error rate, underwater optical wireless communication
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項工作研究了以雷射二極體為光源,用於水下無線光通訊 (UOWC) 的藍光雷射 450nm 系統。實驗室裡長1.5m和3m裝滿水的水箱模擬加入各種要素的自來水。我們分別使用155Mbps、622Mbps、1.25Gbps的數據速率,經過准直透鏡聚焦後的藍光雷射打入水箱。為了增加光線的傳輸距離,鏡子放置在水箱外面。對誤碼率 (BER) 和接收光功率的測量進行了評估,以評估和分析 UOWC 系統性能。第一種情況,UOWC 系統使用不同密度的水進行測量,其中 1.01、1.02 和 1.03 海水密度由比重計測量。此系統能在密度 1.03的水中達到 3.0 m。水流作為外部參數進行模擬水箱中不同的水密度。在我們提出的系統中,密度1.03的水流可以在 1.5 m的距離內實現 4.907 x 10-4 的 BER。而在更高的溫度下,BER 可以達到 2.18x10-6。由於傳輸信號質量受水中密度的影響,較高的密度將導致更差的 BER,並且需要更多的光功率來傳輸。我們分別在 15°C、20°C、26°C、35°C 和 40°C 進行溫度實驗,以模擬較低溫度、室溫和較高溫度。BER在最低溫度下能達到1.966 x 10-5。然而,由於較高的溫度會影響較低的密度,因此在 40°C 時信號質量更好並達2.187 x 10-6。第二種情況,UOWC 系統測量了幾種類型的水,研究了自來水、氯水、葉綠素和海水的水質。對於這些沒有雜質的實驗條件,我們使用相同的數據速率分別放入108 克氯、7 毫升葉綠素和 2.4 千克海鹽。人們發現,增加水中海鹽、氯和葉綠素的質量會通過增加光衰減來降低 UOWC 的性能。人們發現,氯衰減、葉綠素吸收和海水粒子散射的影響是導致最大數據速率降低和誤碼率增加的原因。


    This work investigated a blue laser 450nm system for underwater wireless optical communication (UOWC) based on diodes was developed. The 1.5 m and 3 m lengths of the water tank filled with water conduct in the laboratory simulate the open various water. We used 155Mbps, 622Mbps, 1.25Gbps data rate, blue laser light that has been collimated with a collimated lens is injected into the water tank. In order to increase the transmission distance of the light, a mirror was placed outside the water tank. The measurement of bit error rate (BER) and receive optical power were assessed to evaluate and to analyze the UOWC system performance. First scenario, the UOWC system is measured with several types of water densities, which 1.01, 1.02, and 1.03 sea water densities that measured by hydrometers. This system is capable to achieve 3.0 meters in 1.03 dense water. Water flow was conducted as external parameters to simulate different water densities in the water tank. In our proposed system, water flow in the 1.03 water density can achieve BER of 4.907 x 10-4 over a 1.5-meter distance. At higher temperatures, the BER can reach 2.18x10-6. Since the transmission signal quality is affected by the water densities, higher water densities will result in much worse BER and require more optical power to transmit. We conducted temperature experiments at 15°C, 20°C, 26°C, 35°C, and 40°C to simulate lower temperatures, room temperatures, and higher temperatures. The BER can achieve until 1.966 x 10-5 in the lowest temperature that we use. However, the signal quality in the 40°C has better and achieve until 2.187 x 10-6 due to a higher temperature can affect a lower density. Second scenario, the UOWC system is measured with several types of water qualities, which tap water, chlorine water, chlorophyll, and sea water qualities were studied. We used same data rates, for these experimental conditions with no impurity, 108 g Chlorine, 7 ml chlorophyll, and 2.4 kg sea salt. It was discovered that increasing the qualities of sea salt, chlorine, and chlorophyll in water decreased the performance of the UOWC by increasing light attenuation. It was discovered that the effects of chlorine attenuation, chlorophyll absorption, and scattering by sea water particles are what cause the maximum data rates to decrease and increase in bit error rate.

    ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii CHAPTER 1 INTRODUCTION 1 1.1 Preface 1 1.2 Research Motivation 2 1.3 Prior Works and Methodologies 3 1.4 Thesis Outline 4 CHAPTER 2 PRINCIPLES AND CHARACTERISTICS OF UOWC 5 2.2 Transmitter 6 2.2.1 The LASER 6 2.2.2 Comparison of Laser Diodes and LED 7 2.3 Channel Modelling 8 2.3.1 Wave Propagation in the Aquatic Medium 8 2.3.2 Channels Modeling of Aquatic Optical Communication in UOWC 12 2.4 Modulation 13 2.5 Receiver 15 2.5.1 Focus Lens 15 2.5.2 Photodetector 16 2.6 Research Prior Works 18 CHAPTER 3 EXPERIMENTAL SETUP OF UOWC SYSTEM 22 3.1 Experimental Scheme 22 3.2 Experimental Instruments 23 3.3 Laser Characteristics 26 3.4 Loss of Light through Transmission Channel 29 CHAPTER 4 EXPERIMENTAL MEASUREMENT IN WATER DENSITY 30 4.1 Measurement Results in Different Water Density 30 4.2 Water Flow Effect in Different Water Density 35 4.3 Temperature Variation in Sea Water Density 38 4.3.1 High Temperature in Sea water 40 4.3.2 Low Temperature in Sea water 41 CHAPTER 5 EXPERIMENTAL MEASUREMENT IN WATER QUALITIES 44 5.1 Types of Water Qualities 44 5.2 Comparation between Water Qualities 48 CHAPTER 6 CONCLUSION AND FUTURE WORKS 55 6.1 Conclusion 55 6.2 Future Works 56

    1. X. Sun, C. H. Kang, M. Kong, O. Alkhazragi, Y. Guo, M. Ouhssain, Y. Weng, B. H. Jones, T. K. Ng, and B. S. Ooi, J. Light. Technol., 2020, 38, 421-431, doi: 10.1364/JLT.38.000421.
    2. Tang, S., Dong, Y., Zhang, X.: ‘Impulse response modeling for underwater wireless optical communication links’, IEEE Commun., 2014, 62, (1), pp.226–234
    3. S.Q. Duntley, J. Opt. Soc. Am., 53 (1963), pp. 214-233, 10.1364/JOSA.53.000214
    4. J. Doherty, Submarine communication, J. Acoust. Soc. Am. 69 (1981) 335
    5. M. Tivey, P. Fucile, E. Sichel, A Low Power, Low Cost, Underwater Optical Communication System, Ridge 2000 Events, 2004, pp. 27–29.
    6. F. Hanson, S. Radic, High bandwidth underwater optical communication, Appl. Optic. 47 (2008) 277–283, https://doi.org/10.1364/AO.47.000277.
    7. Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, G.-R. Lin, filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission, J. Lightwave Technol. 36 (2018) 1739–1745, https://doi.org/10.1109/JLT.2017.2782840.
    8. C. W. T. and S. Journal Murray, Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873-76 Under the Command of Captain George S. Nares and the Late Captain Frank Tourle Thomson. Charleston, South Carolina: Nabu Press, 2012.
    9. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24 (22), 25502–25509 (2016).
    10. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19 (1), 204–238 (2017)
    11. Dong-Chang Li, Chia-Chun Chen, Shien-Kuei Liaw, Shofuro Afifah, Jiun-Yu Sung and Chien-Hung Yeh, “Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters” Photonics 2021, 8, 74. https://doi.org/10.3390/photonics8030074
    12. M. A. Khalighi and M. Uysal, ‘‘Survey on free space optical communication: A communication theory perspective,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231–2258, Nov. 2014.
    13. I. F. Akyildiz, D. Pompili, and T. Melodia, ‘‘Challenges for efficient communication in underwater acoustic sensor networks,’’ ACM SIGBED Rev., vol. 1, no. 2, pp. 3–8, Jul. 2004.
    14. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, “Optical Wireless Communications System and Channel Modelling with MATLAB” Second Edition, 2018
    15. B. Truax, Acoustic Communication. Westport, CT, USA: Ablex, 2001.
    16. J. Partan, J. Kurose, and B. N. Levine, “A survey of practical issues in underwater networks,” ACM SIGMOBILE Mobile Comput. Commun. Rev., vol. 11, no. 4, pp. 23–33, 2007.
    17. X. Che, I. Wells, G. Dickers, P. Kear, and X. Gong, “Re-evaluation of RF electromagnetic communication in underwater sensor networks,” IEEE Commun. Mag., vol. 48, no. 12, pp. 143–151, Dec. 2010.
    18. D. Pompili and I. F. Akyildiz, “Overview of networking protocols for underwater wireless communications,” IEEE Commun. Mag., vol. 47, no. 1, pp. 97–102, Jan. 2009.
    19. Andrews L.C., Phillips R.L., and Hopen C.Y., (2001), Laser Beam Scintillation with Applications, SPIE Optical Engineering Press the International Society of Optical Engineering Bellingham Washington USA
    20. Arnon S. and Kedar D., (2009), “Non‐line‐of‐sight underwater optical wireless communication network”, Journal of the Optical Society of America A, Vol. 26, No. 3, pp. 530–539
    21. Haltrin V., (1999) “Chlorophyll‐based model of seawater optical properties”, Applied Optics, Vol. 38, No. 33, pp. 6826–6832
    22. J. Smart, “Underwater optical communications systems part 1: variability of water optical
    parameters,” in Proc. IEEE Military Communications Conference (MILCOM’05), Atlantic
    City, NJ, Oct. 2005, pp. 1140–1146. pages 20, 30
    23. Wei, Z., X. Mu, and H. Fu. Wearable Full-Duplex Digital Transceiver for Underwater Optical Wireless Communications. in 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR). 2018. IEEE.
    24. W.S. Tsai, H.H. Lu, H.W. Wu, C.W. Su, Y.C. Huang, A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander, Sci. Rep. 9 (2019)
    25. G.Q. Yang, L.S. Liu, Z.H. Jiang, J. Guo, T.F. Wang, The effect of beam quality factor for the laser beam propagation through turbulence, Optik 156 (2018) 148–154
    26. Zhijian Lv, Gui He, Chengfeng Qiu, Zhaojun Liu “Investigation of Underwater Wireless Optical Communications Links with Surface Currents and Tides for Oceanic Signal Transmission”, Volume 13, Number 3, June 2021
    27. J. Wang, C. Tian, X. Yang, W. Shi, Q. Niu, and T. A. Gulliver “Underwater wireless optical communication system using a 16-QAM modulated 450-nm laser diode based on an FPGA” Appl. Opt. 58, 4553 (2019).
    28. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED” Opt. Express 25, 1193 (2017).
    29. Basel Abu Sharkh, Ahmad A. Al-Amoudi, Mohammed Farooque, Christopher M. Fellows, Seungwon Ihm, Sangho Lee, Sheng Li1 and Nikolay Voutchkov “Seawater desalination concentrate—a new frontier for sustainable mining of valuable minerals”. npj Clean Water (2022) 5:9.
    30. M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E.Udvary, Optical Wireless Communications: An Emerging Technology (Springer, 2016).
    31. M. Kong, B. Sun, R. Sarwar, J. Shen, Y. Chen, F. Qu, J. Han, J. Chen, H. Qin, and J. Xu, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun. 426, 94–98 (2018).
    32. M. Kong, Y. Chen, R. Sarwar, B. Sun, Z. Xu, J. Han, J. Chen, H. Qin,and J. Xu, “Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal,” Opt. Express 26, 3087–3097 (2018).
    33. S. Komatsu, A. Markman, and B. Javidi, “Optical sensing and detection in turbid water using multidimensional integral imaging,” Opt. Lett. 43, 3261–3264 (2018)
    34. G. Cossu, A. Sturniolo, A. Messa, D. Scaradozzi, and E. Ciaramella,“Full-fledged 10Base-T Ethernet underwater optical wireless communication system,” IEEE J. Select Areas Commun. 36, 194–202 (2018).
    35. G. Nootz, S. Matt, A. Kanaev, K. P. Judd, and W. Hou, “Experimentaland numerical study of underwater beam propagation in a Rayleigh–Bénard turbulence tank,” Appl. Opt. 56, 6065–6072 (2017).
    36. M.B Paskyabi, I. Fer, “Turbulence structure in the upper ocean: a comparative study of observations and modeling.” Ocean Dynamics 64, 611–631 (2014).
    37. National Oceanic and Atmospheric Administration “Why do scientists measure sea surface temperature?” (2021)
    38. IPCC (Intergovernmental Panel on Climate Change). 2013. Climate change 2013: The physical science basis. Working Group I contribution to the IPCC Fifth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/report/ar5/wg1.
    39. Physical System Laboratory, Physical Science for Water Resource Management “PSL Map Room - Sea Surface Temperature (SST)” NOAA Optimum Interpolation (OI) Version 2 SST data.
    40. J. M. Toole, “New data on deep-sea turbulence shed light on vertical mixing,” Oceanus, accessed June 2021.
    41. Windows to the Universe, “Temperature of Ocean Water”. © 2012 National Earth Science Teachers Association
    42. L.J. Johnson, F. Jasman, R.J. Green, M.S. Leeson, Recent advances in underwater optical wireless communications, Underwater Technology, Int. J. Soc. Underw. 32 (2014) 167–175
    43. N. Anous, M. Abdallah, M. Uysal, K. Qaraqe, Performance evaluation of LOS and NLOS vertical inhomogeneous links in underwater visible light communications, IEEE Access 6 (2018) 22408–22420
    44. M.V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, J.A. Salehi, Statistical studies of fading inunderwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations, IEEE Trans. Commun. 66 (2018) 4706–4723
    45. D. A. James, A. Galehar, and D. V. Thiel, "Mobile sensorcommunications in aquatic environments for sporting applications," Procedia Engineering, vol. 2, pp. 3017-3022, 2010.
    46. Rabee M. Hagem, David V. Thiel, Steven G. O’Keefe, T. Fickenscher, “Optical Wireless Communication for Real Time Swimmers Feedback: A review” 2012 International Symposium on Communications and Information Technologies (ISCIT)
    47. Department of Health, State Government of Victoria, Australia, “Swimming pools - water quality” Copyright State of Victoria 2021.
    48. NASA Goddard Space Flight Center “Global Chlorophyll”. January 1, 2004
    49. Y. Baykal, “Scintillations of LED sources in oceanic turbulence” Appl. Opt. 55, 8860 (2016).

    無法下載圖示 全文公開日期 2025/01/17 (校內網路)
    全文公開日期 2025/01/17 (校外網路)
    全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE