簡易檢索 / 詳目顯示

研究生: 陳登陽
Deng-Yang Chen
論文名稱: 以碳酸二乙酯製造碳酸二苯酯之反應蒸餾節能程序研究
Energy Saving Design of Diphenyl Carbonate via Dimethyl carbonate with Reactive Distillation Process
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 周宜雄
Yi-Shyong Chou
錢義隆
I-Lung Chien
王聖潔
San-Jang Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 134
中文關鍵詞: 碳酸二苯酯乙酸乙酯反應蒸餾熱耦合設備再混和效應
外文關鍵詞: Diphenyl carbonate, Ethyl acetate, Reactive distillation, Thermal coupling, Remixing effect
相關次數: 點閱:288下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目的為探討熱耦合節能設計之碳酸二苯酯反應蒸餾程序之製程設計與控制。在商業化製程中,一般以光氣法來進行合成碳酸二苯酯,然而光氣法容易造成設備損害及環進汙染等問題。而本研究將以低汙染的碳酸二乙酯與乙酸苯酯作為反應物,經轉酯化後生成碳酸二苯酯及副產物乙酸乙酯。
一般未經熱耦合之蒸餾系統內常存在著容易造成熱負載量上升之再混和效應,而熱耦合設計可以避免或減少再混和效應的發生。本研究先以不同過量反應物設計兩製程,藉由改變兩製程之內部設計規格並以最低之低年總成本為基礎,最適化兩不同設計。緊接著以蒸餾塔內組成分佈中找尋發生再混合效應發生之區域,並以熱耦合設計的方式減低或移除再混和效應,最後再比較兩不同過量設計之最低年總成本。經由熱耦合設計節能設備後,過量乙酸苯酯設計相較於過量碳酸二乙酯設計能省下將近6.7 % 的年總成本。
在動態控制策略上,庫存環路採取基本之設計,品質控制環路方面,先以靈敏度分析找出相關單元之敏感板,以不同的操作變數控制敏感板溫度以維持產品出料規格,最後再給予不同產能擾動與進料組成干擾,以判斷控制環路之可行性。


The purpose of this research is studied the designing and controlling of diphenyl carbonate (DPC) process by using diethyl carbonate (DEC) and phenyl acetate (PA) through the reactive distillation (RD) with thermally coupled arrangement. The NRTL and power law is used to describe the thermodynamic and kinetic model. Two type of excess reactant designs are discussed for finding the minimum total cost (TAC). On the other hands, thermally coupled arrangement can reduce the total energy by eliminating the remixing effect. By observing the mole fraction profile, the remixing effect can be found between RD and separation columns. The total heat duty may be greatly decreased by eliminating the remixing effect. Based on the original RD configurations, two thermally coupled cases have been studied in this research.
After adding the thermal coupling and reducing the total heat duty, the lowest TAC will do the dynamic simulation and control. The product can be maintained the specification by temperature controller scheme when the ±10 % throughput and -5, -10 % composition disturbance.

致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、緒論 1 1.1 前言 1 1.2 文獻回顧 11 1.3 研究動機 14 1.4 組織章程 18 第二章、熱力學及動力學模式 19 2.1 前言 19 2.2 碳酸二苯酯反應蒸餾程序之熱力學模式 21 2.3 碳酸二苯酯程序之動力學模式 29 2.4 不同轉酯化製造碳酸二苯酯之研究 31 第三章、碳酸二苯酯反應蒸餾程序設計與最佳化 35 3.1 前言 35 3.2 過量乙酸苯酯設計 38 3.2.1 過量乙酸苯酯最適化步驟 40 3.2.2 過量乙酸苯酯最適化設計結果 51 3.3 過量碳酸二乙酯設計 59 3.3.1 過量碳酸二乙酯最適化步驟 61 3.3.2 過量碳酸二乙酯最適化結果 70 3.4 不同過量設計之經濟評估 77 第四章、熱耦合節能設計 79 4.1 前言 79 4.2 過量乙酸苯酯熱耦合節能設計與結果 80 4.3 過量碳酸二乙酯熱耦合節能設計與結果 88 4.4 不同過量熱耦合設計之經濟評估與熱負荷分析 95 第五章、動態設計 97 5.1 前言 97 5.2 庫存控制環路 98 5.3 品質控制環路設計 101 5.4 動態控制架構結果 108 5.4.1 系統承受之干擾 108 5.4.2 CS1控制架構與擾動結果 109 5.4.3 CS2控制架構與擾動結果 115 第六章、結論 120 附錄一、年總成本計算公式 123 附錄二、能源價格表 125 附錄三、控制器參數調諧方法 126 參考文獻 127

中文
[1] 林士熙,「合成碳酸二苯酯的高溫高壓反應動力行為研究」,國立臺灣科技大學化學工程研究所,碩士論文,2014
[2] 賀孝芸,「恆溫下含產製碳酸二乙酯主要成分之混合物的氣液相平衡研究」,國立臺灣科技大學化學工程研究所,碩士論文,2014

英文
[1] Agreda, V. H. and Partin, L. R., Reactive distillation process for the production of methyl acetate. U.S. Patent 4435595, 1984
[2] Al-Arfaj, M. and Luyben, W. L., Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column, Ind. Eng. Chem. Res. 39, 3298-3307,2000
[3] Arifin, S. and Chien, I. L., Design and Control of an Isopropyl Alcohol Dehydration Process via Extractive Distillation Using Dimethyl Sulfoxide as an Entrainer, Ind. Eng. Chem. Res., 47, 790-813, 2008
[4] Barbosa, D. and Doherty, M. F., Design and minimum reflux calculations for single-feed multicomponent reactive distillation columns, Chem. Eng. Sci. 43, 1523-1537,1988a
[5] Barbosa, D., and Doherty, M. F., Design and minimum reflux calculations for double-feed multicomponent reactive distillation columns; Chem. Eng. Sci. 43, 2377, 1988b
[6] Cardoso, M. F.; Salcedo, R. L,; Azevedo S. F. D,; Barbosa, D., Optimization of reactive distillation processes with simulated annealing, Chem. Eng. Sci.55, 5059-5078, 2000
[7] Chen, D. Y.; Weng, K. C.; Wang, S. J.; Lee, H.Y., Design of diphenyl carbonate process via reactive distillation configuration, Chem. Eng. Trans. 45, 1195-1200, 2015
[8] Chen, F.; Huss, R. S.; Malone, M. F.; Doherty, M. F., Simulation of kinetic effects in reactive distillation, Comput. Chem. Eng. 24, 2457-2472, 2000
[9] Cheng, K.; Wang, S. J.; Wong, D. S. H.; Liu, W. Z.; Ho, T. J., Optimal Design of a Reactive Distillation Process for the Synthesis of Diphenyl Carbonate. Proceedings of the 6th International Conference on Process Systems Engineering (PSE ASIA), Kuala Lumpur, 2013
[10] Ciric, A. R. and Miao, P., Steady State Multiplicities in an Ethylene Glycol Reactive Distillation Column, Ind. Eng. Chern. Res., 33, 2738-2748, 1994
[11] DeGarmo, J. L.; Parulekar, V. N.; Pinjala, V., Consider Reactive Distillation. Chem. Eng, Prog., 88, 43-50, 1992
[12] Doherty, M. F., and Buzad, G.; Reactive Distillation by Design. Chem. Eng. Res. Des, 70, 448-458, 1992
[13] Douglas, J. M., Conceptual Design of Chemical Processes, McGraw-Hill, NewYork, 1988.
[14] Dunnebier, G.; and Pantelides, C.C., Optimal Design of Thermally Coupled Distillation Columns, Ind. Eng. Chem. Res., 38, 162-176, 1999
[15] Emtir, M.; Rev, E.; Fonyo, Z., Rigorous Simulation of Energy Integrated and Thermally Coupled Distillation Schemes for Ternary Mixture, Appl. Therm. Eng., 21, 1299-1317, 2001
[16] Fidkowski, Z. and Krolikowski L, Thermally coupled system of distillation columns, AIChE J., 32, 537-546, 1986
[17] Gong, J., Mab, X., Wang, S., Phosgene-free Approaches to Catalytic Synthesis of Diphenyl Carbonate and Its Intermediates. Appl. Catal. A-Gen., 316, 1-21, 2007
[18] Gorak, A. and Hoffmann, A., Catalytic Distillation in Structured Packings: Methyl Acetate synthesis, AIChE J., 47, 1067-1076, 2001
[19] Güttinger, T. E. and Morari, M., Predicting Multiple Steady States in Equilibrium Reactive Distillation. 1. Analysis of Nonhybrid Systems, Ind. Eng. Chem. Res., 38, 1633-1648, 1999
[20] Güttinger, T. E. and Morari, M., Predicting Multiple Steady States in Equilibrium Reactive Distillation. 2. Analysis of Hybrid Systems, Ind. Eng. Chem. Res., 38, 1649-1665, 1999
[21] Harmsen, G. J.; Reactive distillation: The front-runner of industrial process intensification A full review of commercial applications, research, scale-up, design and operation, Chem. Eng. Process., 46, 774–780, 2007
[22] Haubrock, J., Wermink, W., Versteeg, G. F., Kooijman, H. A., Taylor., R., van Sint Annaland, M., Hogendoorn, J. A., Reaction from Dimethyl Carbonate (DMC) to Diphenyl Carbonate (DPC) 2. kinetics of the Reactions from DMC via Methyl Phenyl Carbonate to DPC, Ind. Eng. Chem. Res. 47, 9862–9870, 2008
[23] Humphrey, J.L. and Siebert, A.F., Separation Technologies: An Opportunity for Energy Savings, Chem. Eng. Prog.,88, 32-41, 1992
[24] Jacobs, R. and Krishna, R., Multiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis, Ind. Eng. Chem. Res., 32, 1706-1709, 1993
[25] Jana, A. K., Heat integrated distillation operation, Appl. Energy, 87, 1477-1494, 2010
[26] Kaymak, D. B. and Luyben, W. L., Design of Distillation Columns with External Side Reactors. Ind. Eng. Chem. Res., 43, 8049-8056, 2004
[27] Kim, W. B and Lee, J. S., A new process for the synthesis of diphenyl carbonate from dimethyl carbonate and phenol over heterogeneous catalysts, Catal. Lett., 59, 83-88, 1999
[28] Lee, H. Y.; Lai, I. K.; Huang, H. P.; Chien, I. L. Design and Control of Thermally Coupled Reactive Distillation for the Production of Isopropyl Acetate, Ind. Eng. Chem. Res., 51, 11753-11763, 2012
[29] Lestak, F. and Collins, C. Advanced Distillation Saves Energy and Capital. Chem. Eng J., 104, 72-76, 1997
[30] Linnhoff, B.; Dunford, H.; Smith, R., Heat Integration of Distillation Columns into Overall Process, Chem. Eng. Sci., 38, 1175-1188, 1983
[31] Okasinski, M. J. and Doherty, M. F., Design Method for Kinetically Controlled, Staged Reactive, Ind. Eng. Chem. Res., 37, 2821-2834, 1998
[32] Rong, B. G.; Kraslawski, A.; Nystrőm, The Synthesis of Thermally Coupled Distillation Flowsheets for Separations of Five-component Mixtures, Comput. Chem. Eng., 24, 247-252, 2000
[33] Shen, R. C.; Fang, Y. J.; Xiao. W. D. and Zhu, K. H. Synthesis of Diphenyl Carbonate from Dimethyl Carbonate and Phenyl Acetate, Petrochem. Tech., 31, 897-900, 2002
[34] Segovia-Hernández, J.G., Hernández, S., Femat, R., Jiménez, A.; Control of Thermally Coupled Distillation Arrangements with Dynamic Estimation of Load Disturbances, Ind. Eng. Chem. Res., 46, 546-558, 2007
[35] Segovia-Hernández, J.G., Hernández, S., Hernández, A., Control Behaviour of Thermally Coupled Distillation Sequences, Chem. Eng. Res. Des., 80, 783–789, 2002
[36] Sikdar S.K., Catalyzed interfacial polycondensation polycarbonate process, US4368315 A, 1983
[37] Thery, R., Meyer, X.M., Joulia, X.,Meyer, M.; Preliminary Design of Reactive Distillation Columns, Chem. Eng. Res. Des., 83, 379-400, 2005
[38] Tuchlenski, A.; Beckmann, A.; Reusch, D.; Dussel, R.; Weidlich, U.; Janowsky, R.,. Reactive Distillation: Industrial applications process Design and Scale-up. Chem. Eng. Sci., 56, 387-394, 2001
[39] Turton, R.; Bailie, R. C.; Whiting, W. B.; Shaelwitz, J. A. Analysis, Synthesis, and Design of Chemical Processes, 3rd ed.; Prentice Hall: Upper Saddle River, NJ., 2009
[40] Robinson, C. S. and Gilliland, E. R. Element of Fractional Distillation, 4th ed., McGraw-Hill: New York, 1950
[41] Taylor, R. and Krishna R.; Modeling Reactive Distillation, Chem. Eng. Sci., 55, 5183-5229, 2000
[42] Triantafyllou C. and Smith R., The Design and Optimization of Fully Thermally Coupled Distillation Columns, Trans. Inst. Chem. Eng., 70, 118-124, 1992
[43] Wang, S. J.; Lee, H. Y.; Ho J. H.; Yu, C. C.; Huang, H. P. and Lee, M. J., Plantwide Design of Ideal Reactive Distillation Processes with Thermal Coupling, Ind. Eng. Chem. Res., 49, 3262–3274, 2010
[44] Wang, S. J.; Yu, C. C.; Huang H. P., Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation, Comput. Chem. Eng., 34, 361-373, 2010
[45] Wright, R. O., Standard Oil Development Co., Elizabeth, NJ. U.S. Patent 2471134, 1949
[46] Yao, C.T., VLE and boiling point of binary system of methyl acetate, dimethyl carbonate, phenyl acetate and diphenyl carbonate. Master Thesis, I-Shou University, Taiwan., 2012

無法下載圖示 全文公開日期 2021/07/20 (校內網路)
全文公開日期 2026/07/20 (校外網路)
全文公開日期 2026/07/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE