簡易檢索 / 詳目顯示

研究生: 蕭永長
Yung-chang Shiau
論文名稱: 碳酸二甲酯反應蒸餾系統之設計與控制
Design and Control of Dimethyl Carbonate Reactive Distillation Column Process
指導教授: 錢義隆
I-Lung Chien
口試委員: 黃孝平
none
王國彬
none
周宜雄
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 135
中文關鍵詞: 碳酸二甲酯反應蒸餾
外文關鍵詞: dimethyl carbonate, reactive distillation
相關次數: 點閱:207下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的係探討碳酸二甲酯製程之設計與控制。首先選擇合適的熱力學與動力學模式來描述程序,並使用Aspen Plus進行穩態模擬。本研究提出系統最適化流程,以最小總年度成本(TAC)為目標,先得到反應蒸餾塔最適化之穩態設計及操作條件;再接著得到操作在不同壓力下共沸蒸餾塔系統穩態設計及操作條件,進而將其整合為整廠最適化之穩態設計。接著用Aspen DynamicsTM進行動態模擬。在反應蒸餾塔控制策略上,以第五板溫度作動碳酸乙烯酯進料流率,第十四板溫度作動回流比,從干擾排除來看,控制效果不錯。在整廠設計上,提出兩個控制策略,從干擾排除測試來看,低壓塔的塔底液位作動甲醇的新鮮進料比作動低壓塔塔底出料來得好。


    In this research, design and control of a reactive distillation column to produce dimethyl carbonate is studied. Suitable thermodynamic and kinetic model parameters are used to describe this process. A search procedure is proposed to obtain the optimum process design and operating condition of this process. The optimum process design and flowsheet is obtained by minimizing the Total Annual Cost (TAC) of this process. The optimum process design and flowsheet about reactive distillation is obtained, first then the optimum process design and flowsheet about Pressure-Swing azeotropic distillation column system is obtained. After that, we use Aspen DynamicTM to do dynamic simulation. In the reactive distillation study, the proposed temperature control strategy is use ethylene carbonate feed rate to control 5th tray temperature and to use reflux ratio to control 14th tray temperature. In the overall process study, two control strategies are suggested. Simulation results demonstrate that the bottom level of the 2nd column uses fresh methanol feed rate as the manipulated variable is better than the one uses bottom flow rate of the 2nd column to control the bottom level in the face of various feed disturbances.

    致謝 Ⅰ 中文摘要 Ⅱ 英文搞要 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 ⅩⅡ 第一章、 緒論 1 1.1前言 1 1.2文獻回顧 4 1.2.1反應蒸餾塔之程序分析 4 1.2.2醚類與酯類合成之反應蒸餾塔設計 5 1.2.3反應蒸餾塔之控制策略 7 1.2.4碳酸二甲酯系統 8 1.3研究動機 9 1.4組織章節 11 第二章、 熱力學與動力學模式 12 2.1前言 12 2.2熱力學模式 13 2.3蒸餘曲線圖(RCM) 21 2.4動力學模式建立與參數 24 第三章、 程序最適化設計 26 3.1前言 26 3.2碳酸二甲酯製程設計概念 27 3.2.1碳酸二甲酯製程反應蒸餾塔設計 27 3.2.2碳酸二甲酯製程共沸蒸餾塔設計 30 3.3 TAC最適化流程設計 34 3.3.1碳酸二甲酯反應蒸餾塔最適化流程設計 34 3.3.2碳酸二甲酯反應蒸餾塔最適化流程設計 55 3.3.3碳酸二甲酯整廠製程最適化設計 73 第四章、動態模擬 76 4.1前言 76 4.2碳酸二甲酯製程之庫存控制環路 77 4.3碳酸二甲酯製程反應蒸餾塔之控制架構 79 4.4碳酸二甲酯整廠製程之控制架構 95 4.4.1控制策略一 97 4.4.2控制策略二 101 第五章、結論 124 參考文獻 126 附錄A 132

    [中文]
    [1] 鄧耀斌,「乙酸乙酯反應器/蒸餾塔流程之設計與控制」,國立台灣科大學化學工程所碩士論文(2003) .
    [2] 曾楷倫,「丙烯酸丁酯反應器之設計與控制」,國立台灣科大學化學工程所碩士論文(2004)
    [3] 郭建麟,「丙烯酸乙酯製程之設計與控制」,國立台灣科大學化學工程所碩士論文(2005)
    [4] 黃昭順,「銅系觸媒氣相合成碳酸二甲酯之研究」,國立台灣科大學化學工程所碩士論文(2005)
    [5] 陳志凱,「丙烯酸乙酯及乙酸丁酯製程之最適化控制」,國立台灣科大學化學工程所碩士論文(2006)
    [6] 陳俊宏,「利用反應性蒸餾系統經由轉酯反應生產乙酸丁酯之設計與控制」,國立台灣大學化學工程所碩士論文(2006)
    [7] 劉波, 盧永祥, 涂風霞, 沈玲弟, 羊洋, “水蓮取精餾分離碳酸二甲酯工藝,” 中華人民共和國國家知識產權局, 97107789.4, 1999
    [8] 尼索利, A., 布溫斯, S. M., 多赫蒂, M. F., 馬洛尼, M. F., “碳酸二甲酯和甲醇的分離分法,” 中華人民共和國國家知識產權局, 00806659.0, 2002
    [9] 陳義融和范素斐 “開創明日化學的碳酸二甲酯” 化工資訊 8,p58-67 (1993).
    [英文]
    [1] Al-Arfaj, Muhammad A., and Luyben, W. L., “Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column,” Ind. Eng. Chem. Res., 39, 9, 3298-3307, 2000.
    [2] Al-Arfaj, Muhammad A., and Luyben, W. L., “Control Study of Ethyl tert-Butyl Ether Reactive Distillation,” Ind. Eng. Chem. Res., 41, 16, 3784-3796, 2002a.
    [3] Al-Arfaj, Muhammad A., and Luyben, W. L., “Control of Ethylene Glycol Reactive Distillation Column,” AIChE. Journal, 48, 4, 905-908, 2002b.
    [4] Al-Arfaj, Muhammad A., and Luyben, W. L., “Design and Control of an Olefin Metathesis Reactive Distillation Column,” Chem. Eng. Sci., 57, 5, 715-733,2002c.
    [5] Al-Arfaj, Muhammad A., and Luyben, W. L., “Comparative Control Study of Ideal and Methyl Acetate Reactive Distillation,” Chem. Eng. Sci., 57, 24, 5039-5050, 2002d.
    [6] Alejski, Krzsztof., and Duprat, Francoise., “Dynamic Simulation of the Multicomponent Reactive Distillation,” Chem. Eng. Sci., 51, 18, 4237-4252, 1996.
    [7] Athawale, V., and Manjrekar, N., “Enzymatic Synthesis of the Acrylic Esters: A Comparative Study,” Journal of Molecular Catalysis B: Enzymatic, 10, 6, 551-554, 2000.
    [8] Bisowarno, Budi H., Tian, Yu-Chu., Zhao, Futao., and Tade, Moses O., “Pattern-Based Predictive Control for ETBE Reactive Distillation,” J. Proc. Cont., 13, 1, 57-67, 2003.
    [9] Bock, H., Wozny, G.., and Gutsche, B. “Design and Control of a Reaction Distillation Column Including the Recovery System,” Chem. Eng. and Proc., 36, 2, 101-109, 1997.
    [10] Buzad, George., and Doherty, M. F., “Design of Three-Component Kinetically Controlled Reactive Distillation Columns Using Fixed-Point Methods,” Chem. Eng. Sci., 49, 12, 1947-1963, 1994.
    [11] Buzad, George., and Doherty, M. F., “New Tools for the Design of Kinetically Controlled Reactive Distillation Columns for Ternary Mixtures,” Compu. and Chem., 395-408, 1995.
    [12] Chien, I-L., C. J. Wang, and D. S. H. Wong, “Dynamics and Control of a Hetergeneous Azeotropic Distillation Column: Conventional Control Approach,” Ind. Eng. Chem. Res., 38, 468, 1999.
    [13] Comelli, F. and Francesconi, R., “Isothermail Vapor-Liquid Equilibria Measurements, Excess Molar enthalpies, and Excess Molar Volumnes of Dimethyl Carbonate + Methanol, + Ethanol, and + Propan-1-ol at 313.15K,” J. Chem. Eng. Data, 42, 705-709, 1997.
    [14] Fang, Y. J., and W. D. Xiao, “Experimental and Modeling Studies on a Homogeneous Reactive Distillation System for Dimethyl Carbonate Synthesis by Transesterification” Separation and Purification Technology, 34, 255-263, 2004.
    [15] Frey, T., and Stichlmair, J., “Reactive Azeotropes in Kinetically Controlled Reactive Distillation,” Chem. Eng. Res. and Des., Trans of the Ins. of Chem. Eng., Part A, 77, 7, 613-618, 1999.
    [16] Georgiadis, M. C., Schenk, M., Pistikopoulos, E. N., and Gani, R., “The Interactions of Design, Control and Operability in Reactive Distillation Systems,” Comput. and Chem. Eng., 26, 4, 735-746, 2002.
    [17] Gruner, S., Mohl, K. D., Kienle, A., Gilles, E. D., Fernholz, G., and Friedrich, M., “Nonlinear Control of A Reactive Distillation Column,” Control Engineering Practice, 11, 8, 915-925, 2003.
    [18] Hayden J. G. and J. P. O’Connell, “A Generalized Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Res., Dev., 14, 209 ,1975
    [19] Jiménez, L., Wanhschafft, O. M., and Julka, V., “Analysis of Residue Curve Maps of Reactive and Extractive Distillation Units,” Comput. and Chem. Eng., 25, 635-642, 2001.
    [20] Kenig, E. Y., Bäder, H., Górak, A., Beßling, B., Adrian, T., and Shoenmakers, H., “Investigation of Ethyl Acetate Reactive Distillation Process,” Chem. Eng. Sci., 56, 6185-6193, 2001.
    [21] Kumar, A., and Daoutidis, P., “Modeling, Analysis and Control of Ethylene Glycol Reactive Distillation Column,” AIChE. Journal, 45, 1, 51-68, 1999.
    [22] Lee, J. W., Bruggemann, S., and Marquardt, W., “Shortcut Method for Kinetically Controlled Reactive Distillation Systems,“AIChE. Journal, 49, 6, 1471-1487, 2003.
    [23] Luo, H. P., and W. D., Xiao, “A Reactive Distillation Process for a Cascade and Azeotropic Reaction System:Carbonylation of Ethanol with Dimethyl Carbonate,” Chem. Eng. Sci., 56, 403-410, 2001.
    [24] Luo, H. P., W. D., Xiao, and K. H. Zhu, “Isobaric Vapor-Liquid Equilibria of Alkyl Carbonates with Alcohols,” Fluid Phase Equilibria., 175, 91-105, 2000.
    [25] Luo, H. P., J. H. Zhou, W. D., Xiao, and K. H. Zhu, “Isobaric Vapor-Liquid Equilibria of Binary Mixtures Containing Dimethyl Carbonate under Atmospheric Pressure,” J. Chem. Eng. Data., 46, 842-845, 2001.
    [26] Mahajani, S. M., and Kolah, A. K., “Some Design Aspects of Reactive Distillation Columns(RDC),” Ind. Eng. Chem. Res., 35, 12, 4587-4596, 1996.
    [27] Mahajani, S. M., “Kinetic Azeotropy and Design of Reactive Distillation Columns,” Ind. Eng. Chem. Res., 38, 1, 177-186, 1999a.
    [28] Mahajani, S. M., “Design of Reactive Distillation Columns for Multicomponent Kinetically Controlled Reactive Systems,” Chem. Eng. Sci., 54, 10, 1425-1430, 1999b.
    [29] Melles, S., Grievink, J., and Schrans, Stany M., “Optimization of the Conceptual Design of Reactive Distillation Columns,” Chem. Eng. Sci., 55, 11, 2089-2097, 2000.
    [30] Michael, A. P., and Christopher, L. M., “Review of Dimethyl Carbonate(DMC) Manufacture and Its Characteristics as a Fuel Additive,” Energy&Fuels, 11, 2-29, 1997.
    [31] Monroy-Loperena, R., Perez-Cisneros, E., and Alvarez-Ramirez, J., “Robust PI Control Configuration for A High-Purity Ethylene Glycol Reactive Distillation Column,” Chem. Eng. Sci., 55, 21, 4925-4937, 2000.
    [32] Ono, Y. “Catalysis in the Production and Reactions of Dimethylcarbonate, an Environmentally Benign Buliding Block,” Applied Catalysis A., 155, 133-166, 1997.
    [33] Ono, Y. “Dimethyl Carbonate for Environmentally Benign Reactions,” Pure&Appl. Chem., 68(2), 367-375, 1996.
    [34] Okasinski, Matthew J., and Doherty, M. F., “Thermodynamic Behavior of Reactive Azeotropes,” AIChE. Journal, 43, 9, 2227-2238, 1997.
    [35] Okasinski, Matthew J., and Doherty, M. F., “Design Method for Kinetically Controlled, Staged Reactive Distillation Columns,” Ind. Eng. Chem. Res., 37, 7, 2821-2834, 1998.
    [36] Paludetto, R., Paret, G.., and Donati, G.., “Multicomponent Distillation with Chemical Reaction. Mathematical Model Analysis,” Chem. Eng. Sci., 47, 9, 2891-2896, 1992.
    [37] Pöpken, T., Steinigeweg, S., and Gmehling, J., “Synthesis and Hydrolysis of Methyl Acetate by Reactive Distillation Using Structured Catalytic Packings: Experiments and Simulation,” Ind. Eng. Chem. Res., 40, 6, 1566-1574, 2001.
    [38] Rev, Endre, “Reactive Distillation and Kinetic Azeotropy,” Ind. Eng. Chem. Res., 33, 9, 2174-2179, 1994.
    [39] Rodriguez, A., Canosa, J., and Tojo, J., “Physical Properties and Liquid-Liquid Equilibrium of Ternary Mixture(Dimethyl Carbonate +Methanol + Hexane) at 298.15K,” J. Chem. Eng. Data, 46, 184-187, 2001.
    [40] Rodriguez, A., Canosa, J., Dominguez, J., and Tojo, J., “Isobaric Vapour-Liquid Equilibria of Dimethyl Carbonate with Alkanes and Cyclohexane at 101.3kPa,” Fluid Phase Equilibria, 198, 95-109, 2002.
    [41] Rodriguez, A., Canosa, J., Dominguez, J., and Tojo, J., “Vapour-Liquid Equilibria of Dimethyl Carbonate with Linear Alcohols and Estimation of Interaction Parameters for the UNIFAC and ASOG Method,” Fluid Phase Equilibria, 201, 187-201, 2002.
    [42] Schmitt, M., Hasse, H., Althaus, K., and Schoenmakers, H., “Synthesis of n-hexyl Acetate by Reactive Distillation,” Chem. Eng. Proc., 43, 397-409, 2004.
    [43] Seferlis, P., and Grievink, J., “Optimal Design and Sensitivity Analysis of Reactive Distillation Units Using Collocation Models,” Ind. Eng. Chem. Res., 40, 7, 1673-1685, 2001.
    [44] Shi, Y., H. Liu, K. Wang, W. Xiao, and H. Ying, “Measurements of Isothermal Vapor-Liquid Equilibrium of Binary Methanol/Dimethyl Carbonate System Under Pressure,” Fluid Phase Equilibria., 234, 1-10, 2005.
    [45] Smejkal, Q., Haniks, J., and Kolena, J., “2-Methylpropylacetate Synthesis in a System of Equilibrium Reactor and Reactive Distillation Column,” Chem. Eng. Sci., 56, 365-370, 2001.
    [46] Smejkal, Q., and Šoóš, M., “Comparison of Computer Simulation of Reactive Distillation Using ASPEN PLUS and HYSYS Software,” Chem. Eng. Proc., 41, 413-418, 2002.
    [47] Sneesby, M. G.., Tade, Moses O., Datta, R., and Smith, T. N., “ETBE Synthesis Via Reactive Distillation. 2. Dynamic Simulation and Control Aspects,” Ind. Eng. Chem. Res., 36, 5, 1870-1881, 1997.
    [48] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Steady-State Transitions in the Reactive Distillation of MTBE,” Comput and Chem. Eng., 22, 7-8, 879-892, 1998a.
    [49] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Multiplicity and Pseudo-Multiplicity in MTBE and ETBE Reactive Distillation,” Chem. Eng. Res. and Des., Trans of the Ins. of Chem. Eng., Part A, 76, A4, 525-531, 1998b.
    [50] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Two-Point Control of a Reactive Distillation Column for Composition and Conversion,” Journal of Process Control, 9, 1, 19-31, 1999.
    [51] Sneesby, M. G.., Tade, Moses O., and Smith, T. N., “Multi-Objective Control Scheme for an ETBE Reactive Distillation Column,’ Chem. Eng. Res. and Des., Trans of the Ins. of Chem. Eng., Part A, 78, A2, 283-293, 2000.
    [52] Solokhin, A. V., Blagov, S. A., Serafimov, L. A., and Timofeev, V. S., “Open Evaporation Process Accompanied by Chemical Reaction in the Liquid Phase,” Theoretical Foundations of Chemical Engineering, 24, 103-109, 1990a.
    [53] Song, Wei, Venimadhavan, G., Manning, J. M., Malone, M. F., and Doherty, M. F., “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis,” Ind. Eng. Chem. Res., 37, 5, 1917-1928, 1998.
    [54] Taylor, R., and Krishna, R., “Modelling Reactive Distillation,” Chem. Eng. Sci., 55, 5183-5229, 2000.
    [55] Thiel, C., Sundmacher, K., and Hoffmann, U., “Residue Curve Maps for Heterogeneously Catalysed Reactive Distillation of Fuel Ethers MTBE and TAME,” Chem. Eng. Sci., 52, 6, 993-1005, 1997.
    [56] Wang, S. J., Wong, D. S. H., and Lee, E. K., “Effect of Interaction Multiplicity on Control System Design for a MTBE Reactive Distillation Column,” Journal of Process Control, 13, 6, 503-515, 2003a.
    [57] Wang, S. J., Wong, D. S. H., and Lee, E. K., “Control of a Reactive Distillation Column in the Kinetic Regime for the Synthesis of n-Butyl-Acetate,” Ind. Eng. Chem. Res., 42, 5182-5194, 2003b.

    QR CODE